

AQUATIC RESOURCE IDENTIFICATION & DELINEATION REPORT

SR 0001 Section RC3 Improvement Project (MPMS # 93446) Langhorne and Langhorne Manor Boroughs, and Middletown Township Bucks County, Pennsylvania

JMT Project #: 00-0285-005

TABLE OF CONTENTS

	EXECUTIVE SUMMARY	2
I.	INTRODUCTION	4
II.	WETLAND AND WATERCOURSE DELINEATION	4
Α.	METHODOLOGY	
	a. RECORDS RESEARCHb. FIELD INVESTIGATIONS	
	Hydrophytic Vegetation Wetland Hydrology Hydric Soils Watercourse Identification	7 7
	c. FUNCTIONS AND VALUES ASSESSMENT	8
	a. RECORDS RESEARCHb. SOIL CHARACTERISTICS	8 9
V. V.	SUMMARY REFERENCES	
LIST	T OF TABLES	
Гаbl Гаbl	le 1: Wetland Indicator Descriptions Under Natural Conditions	9 11

LIST OF APPENDICES

- A. Professional Qualifications
- **B.** Figures
- **C.** Wetland Determination Data Forms
- D. Site Photographs
- E. Wetland Functional Assessment Data Forms and Key
- F. Wetland and Waterways Delineation Plans

I. EXECUTIVE SUMMARY

This report presents the results of an aquatic resource identification and delineation study conducted by Johnson, Mirmiran, and Thompson, Inc. (JMT) on behalf of the Pennsylvania Department of Transportation (PennDOT) Engineering District 6-0, for the SR 0001 Section RC3 Improvement Project located in Langhorne and Langhorne Manor Boroughs, and Middletown Township, Bucks County, Pennsylvania. Several improvements along the project corridor are proposed, which are primarily related to safety concerns and areas of the corridor failing to meet current design standards. The primary purpose of this project is to facilitate safe and efficient travel within and through the project area to meet current and future transportation needs of the area, while providing a functional and modern roadway that meets current design criteria and driver expectations.

The aquatic resource investigation was conducted on April 19, May 4, 11, and 19, 2021, and November 26, 2024. An additional investigation took place on November 26, 2024 due to changes in the proposed project area. Wetlands were delineated using a combination of secondary data analysis and field verification. Fieldwork was conducted in accordance with the *U.S. Army Corps of Engineers Wetland Delineation Manual* (1987), the *Regional Supplement to the Corps of Engineers Wetland Delineation Manual: Eastern Mountains and Piedmont Region* (2012), and the PennDOT *Wetland Resources Handbook* (Publication No. 325, 2015). Twenty watercourses were identified and delineated in the study area (WUS-1 to WUS-21, excluding WUS-20), including fourteen tributaries to Neshaminy Creek and six tributaries to Mill Creek. Eight palustrine wetlands were also identified and delineated, including four palustrine emergent (PEM) wetlands (WET-A, WET-B, WET-D, WET-E), two palustrine scrub-shrub (PSS) wetlands (WET-1, WET-C), one palustrine forested (PFO) wetland (WET-3), and one mixed PFO/PEM wetland (WET-2). Per 25 Pa. Code § 105.17(1), none of the wetlands within the project area would be classified as Exceptional Value (EV) wetlands.

As of March 20, 2023, the new federal *Waters of the U.S. Rule* had taken effect. However, in light of the U.S. Supreme Court ruling in *Sackett v. Environmental Protection Agency* that was published on May 25, 2023, the USACE is currently interpreting "waters of the United States" (WUS) consistent with this Supreme Court decision.

A Preliminary Jurisdictional Determination (PJD) was held with the USACE on July 27, 2022 in order to verify delineated boundaries and obtain unofficial opinions from the USACE on the jurisdictional status of a subset of resources from the project. The PJD resulted in the following revisions to the previously delineated resources:

- WET-1: The wetland boundary was revised to include a narrow drainage connection to WUS-3;
- WUS-2: The watercourse boundary was extended further upstream along the western side of SR 0413, connecting downstream to a 24-inch reinforced concrete pipe (RCP) that drains to the WUS-2/WUS-3 confluence:
- WET-2: The wetland boundary was revised to include a narrow drainage connection to WUS-2;
- WUS-12: It was determined that this feature was not a watercourse (previously delineated as ephemeral stream); therefore, WUS-12 is no longer included as a watercourse in this report;
- WUS-13: It was determined that this feature was not a watercourse (previously delineated as

ephemeral stream); therefore, WUS-13 is no longer included as a watercourse in this report.

All watercourses in the study area drain to either the Neshaminy Creek or Mill Creek, both of which are classified as Warm Water Fisheries (WWFs) and Migratory Fisheries (MFs) in the Pennsylvania Department of Environmental Protection's (PADEP), PA Code Title 25, Chapter 93 *Water Quality Standards*. According to the Pennsylvania Fish and Boat Commission (PFBC), no stocked trout streams, Approved Trout Waters, Class A wild trout streams, or streams supporting natural trout reproduction occur within or in the vicinity of the study area. In addition, no streams supporting natural trout reproduction were identified downstream of the project area; therefore, no in-stream work restrictions will be required for this project. Any impacts to wetlands and/or waters within the study area will require a permit from the PADEP and the U.S. Army Corps of Engineers (USACE).

II. INTRODUCTION

This Aquatic Resource Identification & Delineation Report has been prepared on behalf of PennDOT Engineering District 6-0 for engineering and environmental studies being performed for the SR 0001 Section RC3 Improvement Project in Langhorne and Langhorne Manor Boroughs, and Middletown Township, Bucks County, Pennsylvania. Several improvements along the project corridor are proposed, which are primarily related to safety concerns and areas of the corridor failing to meet current design standards. The primary purpose of this project is to facilitate safe and efficient travel within and through the project area to meet current and future transportation needs of the area, while providing a functional and modern roadway that meets current design criteria and driver expectations.

The project includes approximately 2.6 miles of roadway reconstruction and widening from just north of the Lincoln Highway (SR 0001) bridge over Business Route 1 (SR 2037) / CSX / SEPTA to approximately 0.2 miles north of the Corn Crib Lane (SR 2197) bridge over Lincoln Highway (SR 0001). A two-mile segment of the northbound and southbound service (frontage) roads along Lincoln Highway also occur within the project limits.

The proposed project is located in Langhorne and Langhorne Manor Boroughs, and Middletown Township, Bucks County, Pennsylvania, and is situated in the Langhorne, PA 7.5-Minute USGS topographic quadrangle (**Figure 1** in **Appendix B**). The project occurs in suburban Bucks County and is in a densely developed residential area with heavy traffic demand. Land use/cover within the immediate vicinity of the study area consists of residential and commercial development, public facilities, woodlands, agricultural fields, and maintained (i.e., mowed) areas. There are several educational and community facilities in the study area, such as Neshaminy High School, the Woods School for children and adults with disabilities, and Cairn University. Our Lady of Grace Cemetery is located north and west of the project along the southbound service road. This project occurs within an area of rolling terrain and variable site topography.

Aquatic resource delineation fieldwork was completed within a study area approximately 100.9 acres in size. This study area consisted of an approximately 2.6-mile long corridor along SR 0001, which extended from approximately 1,000 feet northeast of the SR 0001 bridge crossing over Business Route 1, to approximately 885 feet northeast of the bridge carrying Corn Crib Lane over SR 0001. Due to the proposed work associated with adjacent roads, the width of the study area varied throughout the project corridor.

III. WETLAND AND WATERCOURSE DELINEATION

Investigations were conducted on April 19, May 4, 11, and 19, 2021, and November 26, 2024 by JMT, to identify and delineate the extent and location of jurisdictional waters and wetlands within the project study area pursuant to the federal Clean Water Act (Section 404), the PA Clean Streams Law, the PA Dam Safety and Encroachments Act, and the PA Flood Plain Management Act. The EPA/Corps of Engineers joint memorandum: Clean Water Act Jurisdiction Following the U.S. Supreme Court's Decision in Rapanos v. United States & Carabell v. United States (December 02, 2008), Code of Federal Regulations (33 CFR Parts 320-330) and Chapter 105 of PA Code Title 25, Dam Safety and Waterway Management Rules and Regulations define wetlands and watercourses and provide regulatory jurisdictional guidance on water

obstructions and encroachments. Wetlands with potential federal jurisdiction are defined as those areas satisfying the technical criteria contained in the *Corps of Engineers Wetlands Delineation Manual*, Technical Report Y-87-1, United States Waterway Experiment Station, Vicksburg, Mississippi 1987 (Delineation Manual) and the *Regional Supplement to the Corps of Engineers Wetland Delineation Manual: Eastern Mountains and Piedmont Region Version 2.0*, Technical Report (April 2012). The field investigations were also conducted in accordance with the PennDOT *Wetland Resources Handbook* (Publication No. 325, 2015). Professional qualifications of the individuals involved in the preparation of this report are provided in **Appendix A**.

As of March 20, 2023, the new federal *Waters of the U.S. Rule* had taken effect. However, in light of the U.S. Supreme Court ruling in *Sackett v. Environmental Protection Agency* that was published on May 25, 2023, the USACE is currently interpreting "waters of the United States" (WUS) consistent with this Supreme Court decision. The delineated resource descriptions have been structured to aid USACE regulators in determining jurisdiction using the current regulations. However, resources not jurisdictional to USACE may still be regulated by PADEP.

A. METHODOLOGY

a. RECORDS RESEARCH

In accordance with the Delineation Manual, the Langhorne, PA 7.5-Minute USGS topographic quadrangle (Figure 1 in Appendix B), the Web Soil Survey of Bucks County (Figure 2 in Appendix B), the National Wetlands Inventory (NWI) web-based Interactive Mapper (Figure 3 in Appendix B), and FEMA flood maps (Figure 4 in Appendix B) were reviewed to identify areas with topographical configurations or previously identified mapped wetlands and/or hydric soils, which may suggest the presence of wetlands. The PA Code Title 25, Chapter 93 Water Quality Standards were also investigated.

b. FIELD INVESTIGATIONS

The on-site, "routine" level, wetland identification and delineation methodology contained in the U.S. Army Corps of Engineers (USACE) Delineation Manual (USACE, 1987) was followed. The on-site field investigation involved inspection of the study area to identify areas that satisfy the three wetland parameters (i.e., criteria): a predominance of hydrophytic (wetland) vegetation, wetland hydrology, and hydric soils. In order to make a determination that an area is a wetland, the Delineation Manual requires that, under normal (typical) circumstances, a minimum of one primary wetland indicator be confirmed for each of the three wetland parameters. A failure to confirm or account for all three parameters must result in a finding that the area under evaluation is a non-wetland under normal circumstances. When applicable, site characteristics were evaluated based on the potential for problematic wetland situations, as described in the *Eastern Mountains and Piedmont Regional Supplement*. Data from representative wetland and upland sample plots were recorded on Wetland Determination Data Forms (**Appendix C**). In accordance with the Delineation Manual, the following wetland delineation criteria and primary field indicators were used:

1. Hydrophytic Vegetation

Vegetation in the study area was initially characterized to plant community type based on guidance provided in the *Eastern Mountains and Piedmont Regional Supplement*. Within a plant community, sample plots were established. When possible, 30-foot radius circular sample plots for the tree and woody vine strata, 15-foot radius circular plots for the shrub/sapling stratum, and 5-foot radius circular plots for the herbaceous stratum were used. Larger or smaller plot sizes were used as conditions dictated.

Dominant plant species were then assigned a wetland indicator classification according to the *U.S. Army Corps of Engineers* (USACE) *National Wetland Plant List* (NWPL) (USACE, 2018). The 2018 NWPL (version 3.4) was used, which features updates that were approved on May 18, 2020 (85 Fed. Reg. 29,689, 2020). The indicator status is based on a species frequency of occurrence in wetlands. The wetland indicator rating and the corresponding frequency of occurrence are explained in **Table 1**.

Indicator **Indicator Status Name Description Status Code** Plants that occur almost always OBL Obligate Wetland (more than 99% of the time) in wetlands Plants that occur usually **FACW** Facultative Wetland (67-99% of the time) in wetlands Plants with similar likelihood (34-66% of the time) FAC Facultative of occurring in wetlands/non-wetlands Plants that may occur (1-33% of the time) **FACU** Facultative Upland in wetlands, but are usually in non-wetlands Plants that occur rarely (less than 1% of the time) **UPL** Obligate Upland in wetlands under natural conditions Only genus information known and/or NI Not Included cannot assign accurate indicator status

Table 1. Wetland Indicator Descriptions Under Natural Conditions.

Once the dominant plant species are determined, the procedure for using the hydrophytic vegetation indicators is as follows:

- Step 1: Apply Indicator 1 (Rapid Test for Hydrophytic Vegetation; if not met proceed to Step 2),
- Step 2: Apply Indicator 2 (Dominance Test, if not met proceed to Step 3),
- Step 3: Apply Indicator 3 (Prevalence Test; if not met proceed to Step 4),
- Step 4: Apply Indicator 4 (Morphological Adaptations).

If none of the indicators are satisfied, then the hydrophytic vegetation parameter is not met unless indicators of hydric soil and wetland hydrology are present and the site meets the requirements for a problematic

wetland (see Chapter 5 of the Eastern Mountains and Piedmont Regional Supplement).

2. Wetland Hydrology

The study area was investigated for indicators of wetland hydrology and hydric soils following the *Eastern Mountain and Piedmont Regional Supplement*. Wetland hydrology means that water is present at or above the surface for a prolonged period (in consecutive days) during the growing season. Prolonged duration of seasonally inundated or saturated areas is longer than 12.5 percent of the growing season. Primary indicators of wetland hydrology include direct observation of inundation or saturation at the surface, recorded stream gauge data (where available), water marks or sediment deposits on objects and vegetation (i.e., water-stained leaves), water-carried debris drift lines, oxidized rhizospheres on living roots, etc. Secondary indicators of hydrology include drainage patterns, stressed plants, microtopographic relief, sparsely vegetated concave surfaces, etc. Some vegetative physiological adaptations, such as tree buttressing, shallow rooting, and multiple stems may also indicate wetland hydrology. Any observed wetland hydrologic field indicators were then noted on the data forms. Factors such as the depth of water or depth to free water in the soil excavation pit were also noted. A minimum of one primary or two secondary indicators are required to satisfy the wetland hydrology parameter.

3. Hydric Soils

Soils were investigated in the field using a soil auger and/or sharpshooter shovel. The exposed soils were divided into distinct layers based on color, mottling, and structural and textural differences. Color (chroma) was determined by comparison with standard soil color chips contained in the *Munsell Soil Color Charts* (Munsell, 2009). Because hydric soils are saturated to the surface for periods of sufficient duration during the growing season to create oxygen-free conditions in the upper layer, indicators of oxygen-free conditions develop. Following the guidelines outlined in the *Eastern Mountain and Piedmont Regional Supplement*, observations were made for hydric soil indicators (e.g., depleted or gleyed matrix, redox depletions or concentrations). Soil characteristics of each layer and any hydrologic indicators were recorded on the data forms provided in **Appendix C**.

4. Watercourse Identification

Watercourses were identified and delineated as channels or surface water conveyances featuring defined bed and banks, natural or artificial, hydrologically sorted substrate material, and the presence of an Ordinary High Water Mark (OHWM). These aquatic resources are regulated as Waters of the Commonwealth of Pennsylvania under Chapter 105 of the Pennsylvania Code Title 25, and as Waters of the U.S. (WUS) under the Federal Clean Water Act. The USACE in its Regulatory Guidance Letter 07-01, Clean Water Act Jurisdiction Following the U.S. Supreme Court's Decision in Rapanos v. United States & Carabell v. United States (December 02, 2008), and Corps and EPA Responses to the Rapanos Decision (December 02, 2008), established the basic guidance for determining what will be regulated as WUS. As previously noted, the USACE is currently defining WUS consistent with the Sackett v. Environmental Protection Agency Supreme Court ruling.

A determination of the flow regime (i.e., perennial, intermittent, or ephemeral) for each identified watercourse was made during the field investigations. Watercourses were typically characterized as ephemeral when the following conditions were noted: a lack of baseflow within or below the channel bed, little to no sinuosity, streambed substrate primarily made up of soil particles (except for constructed channels with rock/riprap), and a lack of benthic macroinvertebrates observed in the channel.

Roadside ditches and other stormwater management features that either meet the definition of a wetland or possess an OHWM and are determined to be Relatively Permanent Waters (RPWs), which for the purposes of this report exhibit perennial or intermittent flow, are also regulated as Waters of the Commonwealth and Waters of the U.S. For wetlands located in roadside ditches or stormwater management features to be regulated as Waters of the U.S., they must either generate RPW flow or abut a regulated tributary. Typically, roadside ditches or other stormwater management features that satisfy the definitions of Waters of the Commonwealth and Waters of the U.S. but were constructed in uplands and not relocated natural watercourses, are eligible for PADEP Chapter 105 Waiver #6 and are non-reporting for the USACE under the PASPGP-6.

c. FUNCTIONS AND VALUES ASSESSMENT

A functional assessment was conducted on each identified wetland habitat in the study area. The assessment, presented in narrative format, describes the biotic and abiotic functional parameters of the identified wetland habitats. The assessment was based on parameters as outlined in the USACE *The Highway Methodology Workbook Supplement: Wetland Functions and Values: A Descriptive Approach* (USACE, 2015). Abiotic parameters included the following wetland functions: groundwater recharge/discharge, floodflow alteration, sediment/toxicant retention, nutrient removal, production export, and sediment/shoreline stabilization. Biotic wetland functions and values include fish and shellfish habitat, wildlife habitat, recreation, education/scientific value, uniqueness/heritage, visual quality/aesthetics, and endangered species habitat.

Each function was assessed in terms of its suitability within the wetland being evaluated. This assesses the effectiveness or the "physical or biological ability" of a wetland to perform a particular function or maintain a value. A list of rationales was given to surveyed wetlands for each suitable function and/or value recorded. Principal function(s)/value(s) were assigned to each wetland assessed. The Wetland Function-Value Evaluation Forms and key are provided in **Appendix E**.

B. RESULTS OF INVESTIGATION

a. RECORDS RESEARCH

The study area lies within the Core Creek-Neshaminy Creek (020402010303) and Mill Creek-Silver Lake (020402010405) HUC-12 subwatersheds, which both occur within the Crosswicks-Neshaminy HUC-8 watershed. The NWI map (**Figure 3** in **Appendix B**) revealed two intermittent riverine systems in the immediate study area, including an unnamed tributary (UNT) to Neshaminy Creek (Cowardin Class =

R4SBC) located on the south side of SR 0001 near the western end of the study area, and an UNT to Neshaminy Creek (Cowardin Class = R4SBC) that crosses beneath SR 0001 near the central portion of the study area. One mapped palustrine wetland was identified on the NWI map, which featured a palustrine forested (PFO) wetland (Cowardin Class = PFO1A) located to the north of SR 0001 near the central portion of the study area. According to the FEMA FIRM Maps, there is a FEMA-designated 100-year floodplain (Zone AE) associated with the UNT to Neshaminy Creek that crosses beneath SR 0001 in the central portion of the study area (**Figure 4** in **Appendix B**).

All watercourses in the study area drain to either the Neshaminy Creek or Mill Creek, both of which are designated as Warm Water Fisheries (WWFs) and Migratory Fisheries (MFs) in the Chapter 93 *Water Quality Standards*. Warm Water Fishery indicates "maintenance and propagation of fish species and additional flora and fauna which are indigenous to a warm water habitat." Migratory Fishery indicates "passage, maintenance and propagation of anadromous and catadromous fishes and other fishes which ascend to flowing waters to complete their life cycle." Any tributaries in the immediate study area would also be considered WWFs and MFs.

According to the Pennsylvania Fish and Boat Commission (PFBC), no stocked trout streams, Approved Trout Waters, Class A wild trout streams, or streams supporting natural trout reproduction occur within or in the vicinity of the study area. In addition, no streams supporting natural trout reproduction were identified downstream of the project area; therefore, no in-stream work restrictions will be required for this project.

b. SOIL CHARACTERISTICS

The project study area lies in the Piedmont Upland Section of the Piedmont Physiographic Province (W. D. Sevon, 2000). The dominant topographic forms of this section include broad, rounded to flat-topped hills and shallow valleys. It is underlain primarily by felsic gneiss of the Precambrian era. The predominant soils within the study area include the Chalfont silt loam (CbA), Chester silt loam (CdA, CdB, CdC), Glenville silt loam (GrA), Lawrenceville silt loam (LkA), quarry pits (Pr), Udorthents (Ub), Urban land-Chester complex (UkB, UkD), and Urban land-Glenville complex (UpB) series (**Figure 2** in **Appendix B**). The CbA, CdA, GrA, and LkA soils all contain hydric inclusions, while the remainder of the mapped soils are listed as non-hydric. **Table 2** below provides a summary of the dominant soil unit in each soil series based on information obtained from the *Web Soil Survey*.

Table 2: Soil Series Units within the SR 0001 Section RC3
Improvement Project Study Area

Soil Mapping Soil Mapping Unit Symbol		Drainage Class	Depth to Water Table	Frequency of Flooding	Frequency of Ponding	Hydric Status	
CbA	Chalfont silt loam, 0 to 3 percent slopes	Somewhat poorly drained	6 to 18 inches	None	None	Hydric Inclusions (Hydric Rating = 7)	

T						
CdA	Chester silt loam, 0 to 3 percent slopes	Well drained	More than 80 inches	None	None	Hydric Inclusions (Hydric Rating = 5)
CdB	Chester silt loam, 3 to 8 percent slopes	Well drained	More than 80 inches	None	None	Non-hydric
CdC	Chester silt loam, 8 to 15 percent slopes	Well drained	More than 80 inches	None	None	Non-hydric
GrA	Glenville silt loam, 0 to 3 percent slopes	Moderately well drained	6 to 36 inches	None	None	Hydric Inclusions (Hydric Rating = 5)
LkA	Lawrenceville silt loam, 0 to 3 percent slopes	Moderately well drained	18 to 36 inches	None	None	Hydric Inclusions (Hydric Rating = 4)
Pr	Pits, quarry	N/A	N/A	N/A	N/A	Non-hydric
Ub	Udorthents, loamy	Moderately well drained	12 to 36 inches	None	None	Non-hydric
UkB	Urban land-Chester complex, 0 to 8 percent slopes	Well drained	More than 80 inches	None	None	Non-hydric
UkD	Urban land-Chester UkD complex, 8 to 25 V percent slopes		More than 80 inches	None	None	Non-hydric
Urban land-Glenville UpB complex, 0 to 8 percent slopes		Moderately well drained	6 to 36 inches	None	None	Non-hydric

c. WATER AND WETLAND DESCRIPTIONS

Twenty watercourses (WUS-1 to WUS-21, excluding WUS-20) and eight palustrine wetlands (WET-1 to WET-3, and WET-A to WET-E) were initially identified and delineated in the study area. The following are brief descriptions of each aquatic resource and additional notes from the field investigation. Photographs are provided in **Appendix D**. The study area boundary, delineated wetland and watercourse boundaries, sample plot locations, and photograph locations are shown on the Wetland and Waterways Delineation Plans (**Appendix F**). Please see **Table 3** and **Table 4** below for summaries of the watercourses and wetlands, respectively.

Please note that based on the results of the PJD with the USACE on July 27, 2022, both WUS-12 and WUS-13 have been removed from this report. These features were initially delineated as ephemeral watercourses but were considered by the USACE to be areas of upland drainage and not true channelized watercourses.

Watercourses

Table 3: Summary of Delineated Watercourses within the SR 0001 Section RC3
Improvement Project Study Area

Stream ID	Stream Name	Stream Flow Type	Cowardin Classification	25 PA Code §93 Stream Designation	Channel Width (ft)	Bank Height (ft)	Substrate	Latitude and Longitude (center of stream length in study area)
WUS-1	Trib to Mill Creek	Intermittent	R4SB4	WWF, MF	2-8	0.5-1	silt/sand, gravel	40.170451 N -74.915623 W
WUS-2	Trib to Mill Creek	Intermittent	R4SB3	WWF, MF	5-6	0.5-1	silt/sand, gravel, cobble	40.170433 N -74.914804 W
WUS-3	Trib to Mill Creek	Intermittent	R4SB4	WWF, MF	4-5	2-3	silt/sand, gravel	40.170493 N -74.916710 W
WUS-4	Trib to Neshaminy Creek	Perennial	R5UB1H	WWF, MF	12-45	2-8	silt/sand, gravel, cobble, boulder	40.165800 N -74.925366 W
WUS-5	Trib to Neshaminy Creek	Intermittent	R4SB3	WWF, MF	5-6	2-4	silt/sand, gravel, cobble, concrete rubble	40.165991 N -74.925598 W
WUS-6	Trib to Neshaminy Creek	Perennial	R5UBH1	WWF, MF	6-8	2-3	silt/sand, gravel, cobble, boulder, concrete rubble	40.157442 N -74.943189 W
WUS-7	Trib to Neshaminy Creek	Intermittent	R4SB3	WWF, MF	3-4	3-4	silt/sand, gravel, cobble, concrete rubble	40.157205 N -74.943182 W
WUS-8	Trib to Neshaminy Creek	Intermittent	R4SB3	WWF, MF	2-6	0.5-1	silt/sand, gravel	40.154792 N -74.945707 W
WUS-9	Trib to Mill Creek	Intermittent	R4SB3/4	WWF, MF	2.5-10	1-5	silt/sand, gravel, cobble, concrete rubble	40.174386 N -74.910373 W
WUS-10	Trib to Neshaminy Creek	Intermittent	R4SB3	WWF, MF	3-5	2	silt/sand, gravel, cobble	40.166174 N -74.925563 W
WUS-11	Trib to Neshaminy Creek	Intermittent	R4SB3	WWF, MF	4-6	3-5	silt/sand, gravel, cobble	40.169159 N -74.924571 W
WUS-14	Trib to Neshaminy Creek	Intermittent	R4SB3	WWF, MF	6-12	3-8	silt/sand, gravel, cobble	40.166226 N -74.923121 W
WUS-15	Trib to Mill Creek	Intermittent	R4SB3/4	WWF, MF	6-8	3-5	silt/sand, gravel, cobble	40.174568 N -74.909734 W
WUS-16	Trib to Mill Creek	Ephemeral	R4SB4	WWF, MF	2-3	0.5-1	silt/sand, gravel	40.174611 N -74.910387 W
WUS-17	Trib to Neshaminy Creek	Perennial	R5UB1	WWF, MF	10-15	3	silt/sand, gravel, cobble, boulder	40.169009°N -74.925064°W

Stream ID	Stream Name	Stream Flow Type	Cowardin Classification	25 PA Code §93 Stream Designation	Channel Width (ft)	Bank Height (ft)	Substrate	Latitude and Longitude (center of stream length in study area)
WUS-18	Trib to Neshaminy Creek	Perennial	R5UB1	WWF, MF	10-20	2-6	silt/sand, gravel, cobble	40.168839°N -74.925724°W
WUS-19	Trib to Neshaminy Creek	Intermittent	R4SB4	WWF, MF	2-4	0.5-1.5	silt/sand, gravel, cobble	40.165087°N -74.924519°W
WUS-21	Trib to Neshaminy Creek	Intermittent	R4SB4	WWF, MF	5-6	2-4	silt/sand, gravel, cobble	40.166225°N -74.922985°W

Waters of the U.S. 1 (WUS-1)

Waters of the U.S. 1 (WUS-1) is an intermittent UNT to Mill Creek (Cowardin classification = R4SB4) that generally flows in a northeasterly direction along the southern side of SR 0001 (see **Photos 67-68** in **Appendix D**). This watercourse is approximately 2 to 8 feet wide and the water depth was generally 4 to 6 inches at the upstream end and 1 to 2 inches at the downstream end. Observed substrate consisted of a mix of silt/sand and gravel. Bank heights ranged from 0.5 to 1 foot, with several areas moderately incised, and the riparian area consisted of a mix of trees and shrubs.

Waters of the U.S. 2 (WUS-2)

Waters of the U.S. 2 (WUS-2) is an intermittent UNT to Mill Creek (Cowardin classification = R4SB3) that generally flows in a southeasterly direction along the western side of SR 0413 (Pine Street), to the south of SR 0001 (see **Photos 68-70, 74,** and **81-82** in **Appendix D**). This watercourse is then piped beneath SR 0413 just south of Central Avenue and continues northeast along the southern side of Woods Drive. The average stream width was approximately 5 to 6 feet and the water depth was generally 1 to 3 inches. Observed substrate consisted of a mix of silt/sand, gravel, and sparse cobble rock. Bank heights ranged from 0.5 to 1 foot, with very little areas being incised, and the riparian area consisted of a mix of trees and shrubs.

Waters of the U.S. 3 (WUS-3)

Waters of the U.S. 3 (WUS-3) is an intermittent UNT to Mill Creek (Cowardin classification = R4SB4) that generally flows in a southeasterly direction between East Gillam Avenue and the northern side of SR 0001, where it is then piped and ultimately discharged into the system feeding WUS-2 (see **Photos 9-10** in **Appendix D**). The average stream width was approximately 4 to 5 feet and the water depth was generally 1 to 3 inches. Observed substrate consisted of a mix of silt/sand and sparse gravel. Bank heights ranged from 2 to 3 feet, with some areas being moderately incised. The riparian area consisted of a mix of trees and shrubs.

Waters of the U.S. 4 (WUS-4)

Waters of the U.S. 4 (WUS-4) is a perennial UNT to Neshaminy Creek (Cowardin classification = R5UB1H) that generally flows in a southeasterly direction beneath SR 0001, within woodlands located between SR 2027 (Hulmeville Road) and West Interchange Road (see **Photos 32-33**, **58**, and **90** in **Appendix D**). The stream width was approximately 12 to 45 feet and the water depth was generally 2 to 12 inches with some deeper pools. Observed substrate consisted of a mix of silt/sand, gravel, cobble rock, and sparse boulders. Bank heights ranged from 2 to 8 feet, with some areas being moderately to heavily incised. The riparian area consisted of a mix of trees and shrubs.

Waters of the U.S. 5 (WUS-5)

Waters of the U.S. 5 (WUS-5) is an intermittent UNT to Neshaminy Creek (Cowardin classification = R4SB3) that generally flows in a northeasterly direction on the north side of SR 0001, within woodlands located between SR 2027 (Hulmeville Road) and West Interchange Road (see **Photos 34-35** in **Appendix D**). This stream is fed by WET-3, and ultimately discharges into WUS-4 just north of its crossing beneath SR 0001. The average stream width was approximately 5 to 6 feet and the water depth was generally 2 to 6 inches. Observed substrate consisted of a mix of silt/sand, gravel, cobble rock, and sparse concrete rubble. Bank heights ranged from 2 to 4 feet, with some areas being moderately to heavily incised. The riparian area consisted of a mix of trees and shrubs.

Waters of the U.S. 6 (WUS-6)

Waters of the U.S. 6 (WUS-6) is a perennial UNT to Neshaminy Creek (Cowardin classification = R5UBH1) that generally flows in a southeasterly direction, entering the study area from the north side of SR 2045 (Old Lincoln Highway) and continuing to SR 0001 (see **Photos 25-26, 53,** and **80** in **Appendix D**). This watercourse is then piped beneath SR 0001 and SR 2008 (Highland Avenue), where it daylights and continues further southeast. The average stream width was approximately 6 to 8 feet and the water depth was generally 4 to 6 inches with some pools averaging 8 to 10 inches. Observed substrate consisted of a mix of silt/sand, gravel, cobble rock, and concrete rubble. Bank heights (some areas lined with rock) ranged from 2 to 3 feet, with some areas being moderately incised. The riparian area consisted of a mix of trees and shrubs.

Waters of the U.S. 7 (WUS-7)

Waters of the U.S. 7 (WUS-7) is an intermittent UNT to Neshaminy Creek (Cowardin classification = R4SB3) that generally flows in a northeasterly direction and is located on the north side of SR 0001, east of SR 2008 (Highland Avenue) (see **Photos 23-24** in **Appendix D**). This watercourse emanates from below a pipe outfall on the northeastern side of SR 2008. Surface and roadway runoff hydrology 'upstream' of the pipe outfall is supplied by non-jurisdictional stormwater pipes and inlets. The average stream width was approximately 3 to 4 feet and the water depth was generally 1 to 2 inches. Observed substrate consisted of a mix of silt/sand, gravel, cobble rock, and concrete rubble. Bank heights ranged from 3 to 4 feet, with some areas being

heavily incised. The riparian area consisted of a mix of trees and shrubs.

Waters of the U.S. 8 (WUS-8)

Waters of the U.S. 8 (WUS-8) is an intermittent UNT to Neshaminy Creek Cowardin classification = R4SB3) that generally flows in a southerly direction and is located inside a roadway ramp depression in the southwestern portion of the study area (see **Photo 18** in **Appendix D**). The average stream width was approximately 5 to 6 feet upstream and 2 to 3 feet downstream, and the water depth was generally 2 to 4 inches. Observed substrate consisted of a mix of silt/sand and gravel. Natural bank heights ranged from 0.5 to 1 feet, with some areas being lined with concrete walls. The riparian area consisted of a mix of trees and shrubs.

Waters of the U.S. 9 (WUS-9)

Waters of the U.S. 9 (WUS-9) is an intermittent UNT to Mill Creek (Cowardin classification = R4SB3/4) that generally flows in a southeasterly direction beneath SR 0001 near the northeastern end of the study area (see **Photos 1-2, 77,** and **83** in **Appendix D**). The average stream width was approximately 2.5 feet to the north of SR 0001 and 8-10 feet south of SR 0001, and the water depth was generally 1 to 3 inches. Observed substrate consisted of a mix of silt/sand, gravel, and cobble rock. Bank heights ranged from 3 to 5 feet, with some areas being heavily incised and stabilized by rock and gabions. The riparian area consisted of a mix of trees and shrubs.

Waters of the U.S. 10 (WUS-10)

Waters of the U.S. 10 (WUS-10) is an intermittent UNT to Neshaminy Creek (Cowardin classification = R4SB3) that generally flows in a southeasterly direction alongside WET-3 before discharging into WUS-4 (see **Photo 36** in **Appendix D**). The average stream width was approximately 3 to 5 feet and the water depth was generally 1 to 2 inches. Observed substrate consisted of a mix of silt/sand, gravel, and cobble rock. Bank heights averaged 2 feet, with some areas being moderately incised. The riparian area consisted of a mix of trees and shrubs.

Waters of the U.S. 11 (WUS-11)

Waters of the U.S. 11 (WUS-11) is an intermittent UNT to Neshaminy Creek (Cowardin classification = R4SB3) that generally flows in a westerly direction and is located to the south of West Gillam Avenue and west of West Interchange Road (see **Photos 43** and **85** in **Appendix D**). This watercourse discharges into Waters of the U.S. 17 (WUS-17). The average stream width was approximately 4 to 5 feet and the water depth was generally 2 to 4 inches. Observed substrate consisted of a mix of silt/sand, gravel, and cobble rock. Bank heights ranged from 3 to 5 feet, with some areas being heavily incised. The riparian area consisted of a mix of trees and shrubs.

Waters of the U.S. 14 (WUS-14)

Waters of the U.S. 14 (WUS-14) is an intermittent UNT to Neshaminy Creek (Cowardin classification = R4SB3) that generally flows in a southerly direction along the east side of West Interchange Road, to the south of SR 0001 (see **Photos 63-65**, and **91** in **Appendix D**). This watercourse then flows in a southwesterly direction beneath West Interchange Road, continuing toward its confluence with WUS-4. This watercourse emanates from below a pipe outfall on the southern side of SR 0001. Surface and roadway runoff hydrology 'upstream' of the pipe outfall is supplied by non-jurisdictional stormwater pipes and inlets. The average stream width was approximately 6 to 8 feet to the east of West Interchange Road and 10 to 12 feet to the west of West Interchange Road, and the water depth was generally 1 to 2 inches (a deeper 1 to 2 foot scour pool was observed just downstream of the road crossing). Observed substrate consisted of a mix of silt/sand, gravel, and cobble rock. Bank heights ranged from 3 to 8 feet, with some areas being heavily incised. The riparian area consisted of a mix of trees and shrubs.

Waters of the U.S. 15 (WUS-15)

Waters of the U.S. 15 (WUS-15) is an intermittent UNT to Mill Creek (Cowardin classification = R4SB3/4) that generally flows in a southeasterly direction on the southern side of SR 0001, near the northeastern end of the study area (see **Photos 78-79** in **Appendix D**). This watercourse emanates from below a pipe outfall on the southern side of SR 0001. Surface and roadway runoff hydrology 'upstream' of the pipe outfall is supplied by non-jurisdictional stormwater pipes, inlets, and ditches. The average stream width was approximately 6 to 8 feet and the water depth was generally 1 to 2 inches. Observed substrate consisted of a mix of silt/sand, gravel, and cobble rock. Bank heights ranged from 3 to 5 feet, with some areas being heavily incised. The riparian area consisted of a mix of trees and shrubs.

Waters of the U.S. 16 (WUS-16)

Waters of the U.S. 16 (WUS-16) is an ephemeral UNT to Mill Creek (Cowardin classification = R4SB4) that generally flows in a southwesterly direction towards its confluence with WUS-9 on the northern side of SR 0001 (see **Photo 84** in **Appendix D**). The average stream width was approximately 2 to 3 feet and no base flow was observed in the channel at the time of the field investigation. Observed substrate consisted primarily of silt/sand with sparse gravel. Bank heights averaged 0.5 feet and the riparian area consisted of a mix of trees, shrubs, and herbaceous vegetation. No benthic macroinvertebrates were observed in WUS-16 at the time of the field investigation.

Waters of the U.S. 17 (WUS-17)

Waters of the U.S. 17 (WUS-17) is a perennial UNT to Neshaminy Creek (Cowardin classification = R5UB1) that generally flows in a southwesterly direction and emanates from an outfall pipe beneath West Gillam Avenue (see **Photo 86** in **Appendix D**). The average stream width was approximately 10 to 15 feet and water depth ranged from 8 to 12 inches. Observed substrate consisted primarily of silt/sand, gravel, cobble, and sparse boulders. Bank heights averaged 3 feet and were moderately incised, and the riparian area

consisted of a mix of trees and shrubs.

Waters of the U.S. 18 (WUS-18)

Waters of the U.S. 18 (WUS-18) is a perennial UNT to Neshaminy Creek (Cowardin classification = R5UB1) that generally flows in a southeasterly direction and emanates from an outfall pipe beneath West Gillam Avenue (see **Photo 87** in **Appendix D**). The average stream width was approximately 10 to 20 feet and water depth was 6 to 30 inches. Observed substrate consisted primarily of silt/sand, gravel, and cobble. Bank heights averaged 2 to 6 feet and were moderately to heavily incised, and the riparian area consisted of a mix of trees and shrubs.

Waters of the U.S. 19 (WUS-19)

Waters of the U.S. 19 (WUS-19) is an intermittent UNT to Neshaminy Creek (Cowardin classification = R4SB4) that generally flows in a southwesterly direction along W Highland Avenue and south towards its confluence with WUS-4 (see **Photos 88-89** in **Appendix D**). The average stream width was approximately 2 to 4 feet and surface water was observed from 0 to 1 inches at the time of the field investigation. Observed substrate consisted primarily of silt/sand with sparse gravel and cobble. Bank heights averaged 0.5 to 1.5 feet and the riparian area consisted of a mix of trees and shrubs. It was noted that the channel was covered in leaf litter, with hydric soils evident.

Waters of the U.S. 21 (WUS-21)

Waters of the U.S. 21 (WUS-21) is an intermittent UNT to Neshaminy Creek (Cowardin classification = R4SB4) that generally flows in a westerly direction towards its confluence with WUS-14 on the eastern side of West Interchange Road (see **Photo 92** in **Appendix D**). The average stream width was approximately 5 to 6 feet and water depth was generally 1 to 3 inches. Observed substrate consisted primarily of silt/sand, gravel, and sparse cobble. Bank heights averaged 2 to 4 feet and were moderately incised, and the riparian area consisted of a mix of trees and shrubs.

Wetlands

Notably, none of the wetlands identified in the study area satisfy any of the criteria for Exceptional Value (EV) wetland status, per the requirements listed in 25 Pa. Code § 105.17(1). Therefore, all wetlands in the SR 0001 Section RC3 Improvement Project study area would be considered 'Other Wetlands' per 25 Pa. Code § 105.17(2).

Table 4: Summary of Delineated Wetlands within the SR 0001 Section RC3
Improvement Project Study Area

Wetland ID	Cowardin Class	Acreage (Delineated Area)	Primary Hydrology Sources	Dominant Vegetation ^a	Latitude and Longitude (wetland center)
WET-1	PSS	0.129 acres (open-ended)	seasonally high water table, roadway/surface runoff	boxelder, silky dogwood, smartweed	40.170248 N -74.917069 W
WET-2	PFO/PEM	0.302 acres	seasonally high water table, roadway/surface runoff	red maple, silky dogwood, soft rush	40.170977 N -74.915659 W
WET-3	VET-3 PFO 0.188 acres table, roadway/surface runoff, high stream flows, groundwater seeps		red maple, skunk cabbage	40.166019 N -74.925817 W	
WET-A	PEM 0.005 acres table, roadway/surface runoff, high stream flows		table, roadway/surface	eastern poison-ivy	40.154851 N -74.945805 W
WET-B	PEM	0.007 acres (open-ended)	seasonally high water table, roadway/surface runoff	lesser celandine, Japanese stiltgrass, shallow sedge, soft rush	40.167359 N -74.924060 W
WET-C	ET-C PSS 0.027 acres groundwater seeps, seasonally high water table, roadway/surface runoff		northern spicebush, skunk cabbage, jewelweed	40.165330 N -74.925743 W	
WET-D	PEM	0.133 acres	seasonally high water table, roadway/surface runoff	common reed	40.169202 N -74.913524 W
WET-E	PEM	0.004 acres	seasonally high water table, roadway/surface runoff	soft rush, broadleaf cattail, path rush	40.171834 N -74.914805 W

a dominant vegetation listed is for wetlands as a whole, and may not correspond exactly to dominant species identified within sample plots as presented on the Wetland Determination Data Forms and in the wetland descriptions below.

Wetland 1 (WET-1)

Wetland 1 (WET-1) is a small PSS wetland located north of SR 0001 and east of SR 2049 (Bellevue Avenue) (see **Photos 11-12** in **Appendix D**). The delineated portion of the wetland was approximately 0.129 acres in size. This wetland was delineated as open-ended and continues further north outside the study area. The eastern end of WET-1 discharges into WUS-3. Hydrology in WET-1 is supplied primarily by a seasonally high water table and surface/roadway runoff. Wetland hydrology indicators observed for WET-1 included surface water, high water table, saturation, water marks, algal mat or crust, water-stained leaves, geomorphic position, microtopographic relief, and the FAC-Neutral Test, which satisfied the wetland hydrology parameter. Vegetation within the TP-3 sample plot was dominated by boxelder (*Acer negundo*, FAC), sweetgum (*Liquidambar styraciflua*, FAC), smartweed (*Persicaria* sp.), grape (*Vitis sp.*), silky dogwood (*Cornus*

amomum, FACW), multiflora rose (*Rosa multiflora*, FACU), and soft rush (*Juncus effusus*, FACW). The hydrophytic vegetation parameter was met by the dominance test indicator. The soil sample from TP-3 featured a silt loam texture with a 10 YR 4/2 matrix and 5 YR 4/6 redoximorphic features between 0 and 12 inches in depth, which fulfills the hydric soil parameter as defined by Indicator F3 (Depleted Matrix). Based on these reasons, WET-1 was delineated as a jurisdictional wetland.

WET-1 displays some effectiveness at performing floodflow alteration, sediment/toxicant retention, nutrient removal, and wildlife habitat functions. The principal functions of WET-1 include sediment/toxicant retention and nutrient removal due to the wetland's ability to trap and filter sediment and pollutants from roadway and other surface runoff. See the Wetland Function-Value Evaluation Form for WET-1 in **Appendix E.**

Wetland 2 (WET-2)

Wetland 2 (WET-2) is a mixed PFO/PEM wetland approximately 0.302 acres in size located north of SR 0001 and west of SR 0413 (Pine Street) (see **Photos 13-14** in **Appendix D**). The eastern end of WET-2 discharges into WUS-2. Hydrology in WET-2 is supplied primarily by a seasonally high water table and surface/roadway runoff. Wetland hydrology indicators observed for WET-2 included surface water, high water table, saturation, water marks, water-stained leaves, geomorphic position, microtopographic relief, and the FAC-Neutral Test, which satisfied the wetland hydrology parameter. Vegetation within the TP-4 sample plot was dominated by red maple (*Acer rubrum*, FAC), sweetgum (FAC), silky dogwood (FACW), smooth alder (*Alnus serrulata*, OBL), and apple (*Malus* sp.). The hydrophytic vegetation parameter was met by the dominance test indicator. The soil sample from TP-4 featured a silt loam texture with a 10 YR 4/2 matrix and 5 YR 4/6 redoximorphic features between 0 and 4 inches in depth, a silty clay loam texture with a 10 YR 5/2 matrix and 7.5 YR 4/6 redoximorphic features from 4 to 10 inches in depth, and a silty clay texture with a 10 YR 5/3 matrix and 10 YR 6/8 redoximorphic features from 10 to 16 inches in depth. This soil characterization fulfills the hydric soil parameter as defined by Indicator F3 (Depleted Matrix). Based on these reasons, WET-2 was delineated as a jurisdictional wetland.

WET-2 displays some effectiveness at performing floodflow alteration, sediment/toxicant retention, nutrient removal, and wildlife habitat functions. The principal functions of WET-2 include floodflow alteration due to its ability to retain excessive rainfall and roadway/surface runoff from heavy storm events, as well as sediment/toxicant retention and nutrient removal due to the wetland's ability to trap and filter sediment and pollutants from roadway and other surface runoff. See the Wetland Function-Value Evaluation Form for WET-2 in **Appendix E.**

Wetland 3 (WET-3)

Wetland 3 (WET-3) is a PFO wetland located in the central portion of the study area, north of SR 0001 (see **Photos 35** and **37-38** in **Appendix D**). The delineated portion of the wetland was approximately 0.188 acres in size. This wetland was delineated as open-ended and continues further north outside the study area. Hydrology in WET-3 is primarily supplied by groundwater springs/seeps, a seasonally high water table, high flows from adjacent streams, and roadway/surface runoff. Wetland hydrology indicators observed for WET-

3 included surface water, high water table, saturation, water marks, water-stained leaves, drainage patterns, geomorphic position, microtopographic relief, and the FAC-Neutral Test, which satisfied the wetland hydrology parameter. Vegetation within the TP-9 sample plot was dominated by red maple (FAC), northern spicebush (*Lindera benzoin*, FAC), skunk cabbage (*Symplocarpus foetidus*, OBL), and fox grape (*Vitis vulpina*, FAC). The hydrophytic vegetation parameter was met by the dominance test indicator. The soil sample from TP-9 featured mucky (sapric) organic soils with a 10 YR 2/2 matrix between 0 and 10 inches in depth. Below 10 inches, a rock restrictive layer was encountered. This soil characterization fulfills the hydric soil parameter as defined by Indicator A1 (Histosol). Based on these reasons, WET-3 was delineated as a jurisdictional wetland.

WET-3 displays some effectiveness at performing the groundwater recharge/discharge, floodflow alteration, sediment/toxicant retention, nutrient removal, production export, and wildlife habitat functions. The principal functions of WET-3 include floodflow alteration due to its ability to retain excessive amounts of water from flooding and storm events, sediment/toxicant retention due to the wetland's ability to trap and filter sediment and pollutants from roadway and other surface runoff, and wildlife habitat, as WET-3 provides ample habitat for small mammals, birds, reptiles, amphibians, and insects. See the Wetland Function-Value Evaluation Form for WET-3 in **Appendix E.**

Wetland A (WET-A)

Wetland A (WET-A) is a small PEM wetland approximately 0.005 acres in size, located in a depression north of SR 0001 near the southwestern end of the study area (see **Photo 19** in **Appendix D**). This wetland discharges into WUS-8. Hydrology in WET-A is primarily supplied by a seasonally high water table, high flows from WUS-8, and roadway/surface runoff. Wetland hydrology indicators observed for WET-A included surface water, a high water table, saturation, water-stained leaves, and geomorphic position. Vegetation within the TP-6 sample plot was dominated by poison ivy (*Toxicodendron radicans*, FAC) and red maple (FAC) saplings. The hydrophytic vegetation parameter was met by the dominance test indicator. The soil sample from TP-6 featured a silt loam texture with a 10 YR 2/1 matrix between 0 and 4 inches in depth, and a 10 YR 3/2 matrix with 7.5 YR 5/6 redoximorphic features from 4 to 14 inches in depth. This soil characterization fulfills the hydric soil parameter as defined by Indicator F6 (Redox Dark Surface). Based on these reasons, WET-A was delineated as a jurisdictional wetland.

WET-A displays some effectiveness at performing floodflow alteration, sediment/toxicant retention, nutrient removal, and wildlife habitat functions. The principal function of WET-A is sediment/toxicant retention due to the wetland's ability to trap and filter sediment and pollutants from roadway and other surface runoff. See the Wetland Function-Value Evaluation Form for WET-A in **Appendix E.**

Wetland B (WET-B)

Wetland B (WET-B) is a PEM wetland located north of SR 0001 and west of West Interchange Road (see **Photos 40-41** in **Appendix D**). The delineated portion of the wetland was approximately 0.007 acres in size. This wetland was delineated as open-ended and continues further west outside the study area. This wetland

emanates from a small pipe beneath West Interchange Road. Hydrology in WET-B is supplied primarily by a seasonally high water table and surface/roadway runoff. Wetland hydrology indicators observed for WET-B included surface water, a high water table, saturation, geomorphic position, and microtopographic relief, which satisfied the wetland hydrology parameter. Vegetation within the TP-11 sample plot was dominated by lesser celandine (*Ficaria verna*, FAC) and Japanese stiltgrass (*Microstegium vimineum*, FAC). The hydrophytic vegetation parameter was met by the dominance test indicator. The soil sample from TP-11 featured a mucky loam/clay texture with a 10 YR 2/2 matrix between 0 and 2 inches in depth, and a silt loam texture with a 10 YR 3/2 matrix and 7.5 YR 4/6 redoximorphic features from 2 to 10 inches in depth. This soil characterization fulfills the hydric soil parameter as defined by Indicator F6 (Redox Dark Surface). Based on these reasons, WET-B was delineated as a jurisdictional wetland.

WET-B displays some effectiveness at performing the sediment/toxicant retention, nutrient removal, and wildlife habitat functions. The principal function of WET-B is sediment/toxicant retention due to the wetland's ability to trap and filter sediment and pollutants from roadway and other surface runoff. See the Wetland Function-Value Evaluation Form for WET-B in **Appendix E.**

Wetland C (WET-C)

Wetland C (WET-C) is a PSS wetland located south of SR 0001 and west of WUS-4 (see **Photo 60** in **Appendix D**). The delineated portion of the wetland was approximately 0.027 acres in size. This wetland was delineated as open-ended and continues further south outside the study area. Multiple narrow fingers fed by groundwater seepage were observed in the vicinity of the study area. Hydrology in WET-C is primarily supplied by groundwater springs/seeps, a seasonally high water table, and roadway/surface runoff. Wetland hydrology indicators observed for WET-C included surface water, high water table, saturation, iron deposits, water-stained leaves, drainage patterns, geomorphic position, and the FAC-Neutral Test, which satisfied the wetland hydrology parameter. Vegetation within the TP-14 sample plot was dominated by northern spicebush (FAC), skunk cabbage (OBL), lesser celandine (FAC), and jewelweed (*Impatiens capensis*, FACW). The hydrophytic vegetation parameter was met by the dominance test indicator. The soil sample from TP-14 featured mucky (sapric) organic soils with a 10 YR 2/1 matrix and some depleted 10 YR 4/2 mineral soils between 0 and 8 inches in depth, and a 10 YR 3/2 matrix from 8 to 12 inches in depth. This soil characterization fulfills the hydric soil parameter as defined by Indicator A2 (Histic Epipedon). Based on these reasons, WET-C was delineated as a jurisdictional wetland.

WET-C displays some effectiveness at performing the groundwater recharge/discharge, floodflow alteration, sediment/toxicant retention, nutrient removal, and wildlife habitat functions. The principal function of WET-C is sediment/toxicant retention due to the wetland's ability to trap and filter sediment and pollutants from roadway and other surface runoff. See the Wetland Function-Value Evaluation Form for WET-C in **Appendix E.**

Wetland D (WET-D)

Wetland D (WET-D) is a PEM wetland approximately 0.133 acres in size and is located south of SR 0001 and east of SR 0413 (Pine Street) (see **Photo 72** in **Appendix D**). Hydrology in WET-D is supplied primarily by a seasonally high water table and surface/roadway runoff. Wetland hydrology indicators observed for WET-D included oxidized rhizospheres on living roots, geomorphic position, and the FAC-Neutral Test, which satisfied the wetland hydrology parameter (the wetland was primarily dry during the delineation). Vegetation within the TP-16 sample plot was dominated by common reed (*Phragmites australis*, FACW). The hydrophytic vegetation parameter was met by the rapid test and dominance test indicators. The soil sample from TP-16 featured a silt loam texture with a 10 YR 4/2 matrix between 0 and 2 inches in depth, a clay loam texture with a 10 YR 4/3 matrix and 10YR 4/6 redoximorphic features from 2 to 7 inches in depth, and a silty clay loam texture with a 10 YR 2/2 matrix and 7.5 YR 4/6 redoximorphic features from 7 to 14 inches in depth. This soil characterization fulfills the hydric soil parameter as defined by Indicator F6 (Redox Dark Surface). Based on these reasons, WET-D was delineated as a jurisdictional wetland.

WET-D displays some effectiveness at performing floodflow alteration, sediment/toxicant retention, nutrient removal, and wildlife habitat functions. The principal function of WET-D is sediment/toxicant retention due to the wetland's ability to trap and filter sediment and pollutants from roadway and other surface runoff. See the Wetland Function-Value Evaluation Form for WET-D in **Appendix E**.

Wetland E (WET-E)

Wetland E (WET-E) is a PEM wetland approximately 0.004 acres in size and is located north of SR 0001 and east of SR 0413 (Pine Street) (see **Photo 5** in **Appendix D**). This wetland consists of a small, shallow depression located at the edge of a maintained field. Hydrology in WET-E is supplied primarily by a seasonally high water table and surface/roadway runoff. Wetland hydrology indicators observed for WET-E included surface water, saturation (episaturation), water-stained leaves, geomorphic position, microtopographic relief, and the FAC-Neutral Test, which satisfied the wetland hydrology parameter. Vegetation within the TP-1 sample plot was dominated by soft rush (FACW), broad-leaf cattail (*Typha latifolia, OBL*), and path rush (*Juncus tenuis*, FAC). The hydrophytic vegetation parameter was met by the dominance test indicator. The soil sample from TP-1 featured a clay texture with a 10 YR 5/2 matrix and 10YR YR 6/8 redoximorphic features between 0 and 10 inches in depth. This soil characterization fulfills the hydric soil parameter as defined by Indicator F3 (Depleted Matrix). Based on these reasons, WET-E was delineated as a jurisdictional wetland.

WET-E displays some effectiveness at performing the sediment/toxicant retention, nutrient removal, and wildlife habitat functions. The principal function of WET-E is sediment/toxicant retention due to the wetland's ability to trap and filter sediment and pollutants from roadway and other surface runoff. See the Wetland Function-Value Evaluation Form for WET-E in **Appendix E**.

Stormwater Management Features

Typical roadside drainage features were observed throughout the study area and included stormwater inlets and small pipes, ditches, and grass swales. With the exception of any aquatic resources noted above, these features lacked a continuous OHWM and RPW flow and did not meet the definition of a wetland.

Uplands

Uplands within the study area primarily consisted of forested lands, non-maintained fields, and maintained ROW and other mowed areas. Vegetation commonly observed in upland areas throughout the study area included tulip poplar (*Liriodendron tulipifera*, FACU), American beech (*Fagus grandifolia*, FACU), black cherry (*Prunus serotina*, FACU), black walnut (*Juglans nigra*, FACU), Norway maple (*Acer platanoides*, UPL), boxelder (FAC), sassafras (*Sassafras albidum*, FACU), oaks (*Quercus* sp.), Amur honeysuckle (*Lonicera maackii*, UPL), multiflora rose (*Rosa multiflora*, FACU), Japanese wineberry (*Rubus phoenicolasius*, FACU), Japanese honeysuckle (*Lonicera japonica*, FACU), garlic mustard (*Alliaria petiolata*, FACU), lesser celandine (FAC), Japanese stiltgrass (FAC), tall goldenrod (*Solidago altissima*, FACU), common mugwort (*Artemisia vulgaris*, UPL), and upland grasses.

Soil samples observed in the study area outside of the aforementioned wetlands were typically non-hydric. For additional data on uplands within the study area, please see the upland sample plot data forms (TP-2, TP-5, TP-7, TP-8, TP-10, TP-12, TP-13, TP-15, TP-17) in **Appendix C**.

IV. SUMMARY

JMT has completed an aquatic resource identification and delineation in the established study area for the proposed SR 0001 Section RC3 Improvement Project located in Langhorne and Langhorne Manor Boroughs, and Middletown Township, Bucks County, Pennsylvania. The study area consisted of approximately 100.9 acres along a 2.6-mile long corridor of SR 0001, which extended from approximately 1,000 feet northeast of the SR 0001 bridge crossing over Business Route 1, to approximately 885 feet northeast of the bridge carrying Corn Crib Lane over SR 0001.

Twenty watercourses were initially identified and delineated in the study area (WUS-1 to WUS-21, excluding WUS-20), including fourteen tributaries to Neshaminy Creek and six tributaries to Mill Creek. Eight palustrine wetlands were also identified and delineated, including four palustrine emergent (PEM) wetlands (WET-A, WET-B, WET-D, WET-E), two palustrine scrub-shrub (PSS) wetlands (WET-1, WET-C), one palustrine forested (PFO) wetland (WET-3), and one mixed PFO/PEM wetland (WET-2). Per 25 Pa. Code § 105.17(1), none of the wetlands within the project area would be classified as Exceptional Value (EV) wetlands.

A Preliminary Jurisdictional Determination (PJD) was held with the USACE on July 27, 2022 in order to verify delineated boundaries and obtain unofficial opinions from the USACE on the jurisdictional status of a subset of resources from the project. The PJD resulted in the following revisions to the previously delineated resources:

- WET-1: The wetland boundary was revised to include a narrow drainage connection to WUS-3;
- WUS-2: The watercourse boundary was extended further upstream along the western side of SR 0413, connecting downstream to a 24-inch RCP that drains to the WUS2/WUS-3 confluence;
- WET-2: The wetland boundary was revised to include a narrow drainage connection to WUS-2;
- WUS-12: It was determined that this feature was not a watercourse (previously delineated as ephemeral stream); therefore, WUS-12 is no longer included as a watercourse in this report;
- WUS-13: It was determined that this feature was not a watercourse (previously delineated as ephemeral stream); therefore, WUS-13 is no longer included as a watercourse in this report.

Any temporary or permanent impacts to wetlands and/or watercourses would require permits from the PADEP and USACE.

All watercourses in the study area drain to either the Neshaminy Creek or Mill Creek, both of which are classified as WWFs and MFs in the PADEP, PA Code Title 25, Chapter 93 *Water Quality Standards*. According to the PFBC, no stocked trout streams, Approved Trout Waters, Class A wild trout streams, or streams supporting natural trout reproduction occur within or in the vicinity of the study area. In addition, no streams supporting natural trout reproduction were identified downstream of the project area; therefore, no in-stream work restrictions will be required for this project.

Wetland and waterways investigations of this type reflect the current state of conditions. The delineation is often based on professional judgment, experience, and the information and techniques available. A determination of jurisdictional areas and their boundaries, especially in highly disturbed and variable conditions of a developed area, can only be conducted through a consultation with the USACE and/or PADEP.

V. REFERENCES

Clean Water Act Jurisdiction Following the U.S. Supreme Court's Decision in Rapanos v. United States & Carabell v. United States, Joint EPA/Army Memorandum, December 02, 2008 (revision of original dated June 6, 2007).

Cowardin, Lewis M., et al. 1979. *Classification of Wetlands and Deepwater Habitats of the United States*. U.S. Department of the Interior, Office of Biological Services, Fish and Wildlife Service, Washington, D.C. FWS/OBS-79/31.

Environmental Laboratory. (1987). *Corps of Engineers Wetlands Delineation Manual*, Technical Report Y-87-1, U.S. Army Engineer Waterways Experiment Station, Vicksburg, Miss.

Gertler, E. 2004. Keystone Canoeing: A Guide to Canoeable Waters of Eastern Pennsylvania. Silver Spring, Maryland, Seneca Press.

Geyer, A. R. and J. P. Wilshusen. 1982. *Engineering Characteristics of the Rocks of Pennsylvania*, Pennsylvania Department of Environmental Resources, Bureau of Topographic and Geologic Survey, Environmental Geology Report 1.

Lichvar, R. W., D. L. Banks, W. N. Kirchner, and N. C. Melvin. 2016. *The National Wetland Plant List*. 2016 wetland ratings. Phytoneuron 2016-30: 1-17. Published 28 April 2016. ISSN 2153 733X.

Munsell. 2009. Munsell Soil Color Charts. Munsell Color, Grand Rapids, MI.

Pennsylvania Department of Environmental Protection (PADEP). 2014. *Chapter 93: Water Quality Standards*. Pennsylvania Code Title 25. Harrisburg, Pennsylvania.

Pennsylvania Department of Environmental Protection (PADEP). 2014. *Chapter 105: Dam Safety and Waterway Management*. Pennsylvania Code Title 25. Harrisburg, Pennsylvania.

Pennsylvania Department of Transportation (PennDOT). 2015. Publication 325: Wetland Resources Handbook.

Pennsylvania Fish & Boat Commission (PFBC). 2021. *Class A Wild Trout Waters*. (http://fishandboat.com/classa.pdf)

Pennsylvania Fish & Boat Commission (PFBC). 2021. *Pennsylvania Wild Trout Waters (Natural Reproduction)* (http://fishandboat.com/trout_repro.pdf)

Sackett v. Environmental Protection Agency, 598 U.S. ____ (2023).

- Sevon, W. D., 2000. *Physiographic Province of Pennsylvania*, Pennsylvania Department of Conservation and Natural Resources, Bureau of Topographic and Geologic Survey, Map 13.
- U.S. Army Corps of Engineers. 2015. *The Highway Methodology Workbook Supplement: Wetland Functions and Values: A Descriptive Approach*. U.S. Army Corps of Engineers New England Division.
- U.S. Army Corps of Engineers. 2012. Regional Supplement to the Corps of Engineers Wetland Delineation Manual: Eastern Mountains and Piedmont Region Version 2.0, ed. J.F. Berkowitz, J.S. Wakeley, R.W. Lichvar, C.V. Noble. ERDC/EL TR-12-9. Vicksburg, MS: U.S. Army Engineer Research and Development Center.
- U.S. Army Corps of Engineers. 2018. National Wetland Plant List, version 3.4. U.S. Army Corps of Engineers, Engineer Research and Development Center. Cold Regions Research and Engineering Laboratory, Hanover, NH. http://wetland_plants.usace.army.mil/
- U.S. Army Corps of Engineers. "National Wetland Plant List (final notice)." 85 Fed. Reg. 29,689 (May 18, 2020).
- U.S. Department of Agriculture, Natural Resources Conservation Service (NRCS). 1997. *Hydric Soils of Pennsylvania*. http://www.statlab.iastate.edu:80/soils/hydric/pa.html/
- U.S. Department of Agriculture, Natural Resources Conservation Service (NRCS). 2024. *Web Soil Survey of Clearfield County, Pennsylvania.*
- U.S. Department of Homeland Security, Federal Emergency Management Agency. 2024. *Flood Map Service Center*. https://msc.fema.gov/portal/
- U.S. Fish and Wildlife Service. 2024. National Wetlands Inventory website. U.S. Department of the Interior, Fish and Wildlife Service, Washington D.C. http://www.fws.gov/wetlands/
- U.S. Geological Survey. 2019. *Langhorne, PA 7.5 Minute Quadrangle Map.* Scale 1:24,000. Northeastern Topographic Series V-1. Reston, VA: U.S. Department of the Interior, USGS.

Appendix A Professional Qualifications

Pennsylvania Department of Transportation

Consultant Qualifications Package Resumes

paste" capabilities of your word procincluded with the submission)	•	•	•			
Resume #				JOHNSON, MIRMIRAN & THOMPSON Engineering A Brighter Future®		
Name Craig Patterson Nein		Title En	Environmental Scientist			
Primary Responsibilities						
Resource Delineation, Endangered S	Species, Permit	ting, NEPA	Documentation			
Years Experience: With This Fire	rm <u>10</u>		With Other Firms	8		
Education						
Institution	Degree(s)	Year	Specialization	1		
University of Mary Washington	BS	2004	Environmenta	al Science		
Towson University	MS	2012	Biology	Biology		
Active Registration						
Year first registered						
Disciplines						

Other Experience and Qualifications

Mr. Nein has over 15 years of experience in the natural resources field. He has held positions with the Maryland Department of Natural Resources, the Department of the Interior (US Fish & Wildlife Service), Towson University, and the Maryland Conservation Corps prior to joining JMT. His areas of expertise include wetlands, endangered species (specifically the bog turtle (*Glyptemys muhlenbergii*)), and habitat assessments. Mr. Nein also has experience in the preparation of environmental permit applications and NEPA documents, including Chapter 105/Section 404 permitting, NPDES permitting, and portions of environmental impact statements. Mr. Nein is recognized by state and federal agencies as a Qualified Bog Turtle Surveyor in the states of Pennsylvania, Maryland, and Delaware. Other experience includes assistance with Phase I archaeological investigations and ambient noise monitoring. Some of his project specific experience includes:

PTC MP 53 – 57 Total Reconstruction, Allegheny County, PTC, Plum Borough and Monroeville, PA: Environmental Scientist. Mr. Nein assisted with the delineation of wetlands and Waters of the U.S. along the 4 mile project corridor of the PA Turnpike. He prepared a complete Wetland Identification and Delineation Report that was accepted by PTC without comments. Mr. Nein compiled extensive environmental data and information on the project area and prepared an Environmental Overview Document (EOD). Mr. Nein also assisted with the collection of ambient noise measurements in the field and the preparation of a Preliminary Technical Noise Report.

S.R. 0216, Section 015 Blooming Grove Road Bridge Replacement, PennDOT District 8-0, Codorus and Manheim Townships, PA: Environmental Scientist. Responsible for the identification and delineation of all waters of the U.S. on site, including wetlands. He conducted a Phase 1 Bog Turtle Habitat Assessment for the delineated wetlands and prepared a Wetland Identification and Delineation Report and Phase 1 Bog Turtle Habitat Assessment Report. Mr. Nein also led a Phase 2 Bog Turtle Survey to determine the presence/probable absence of the species within wetlands with potential habitat in the vicinity of the project area, and submitted a Phase 2 Bog Turtle Survey Report to the USFWS in order to obtain project clearance. Mr. Nein also assisted with the preparation of a

Pennsylvania Department of Transportation

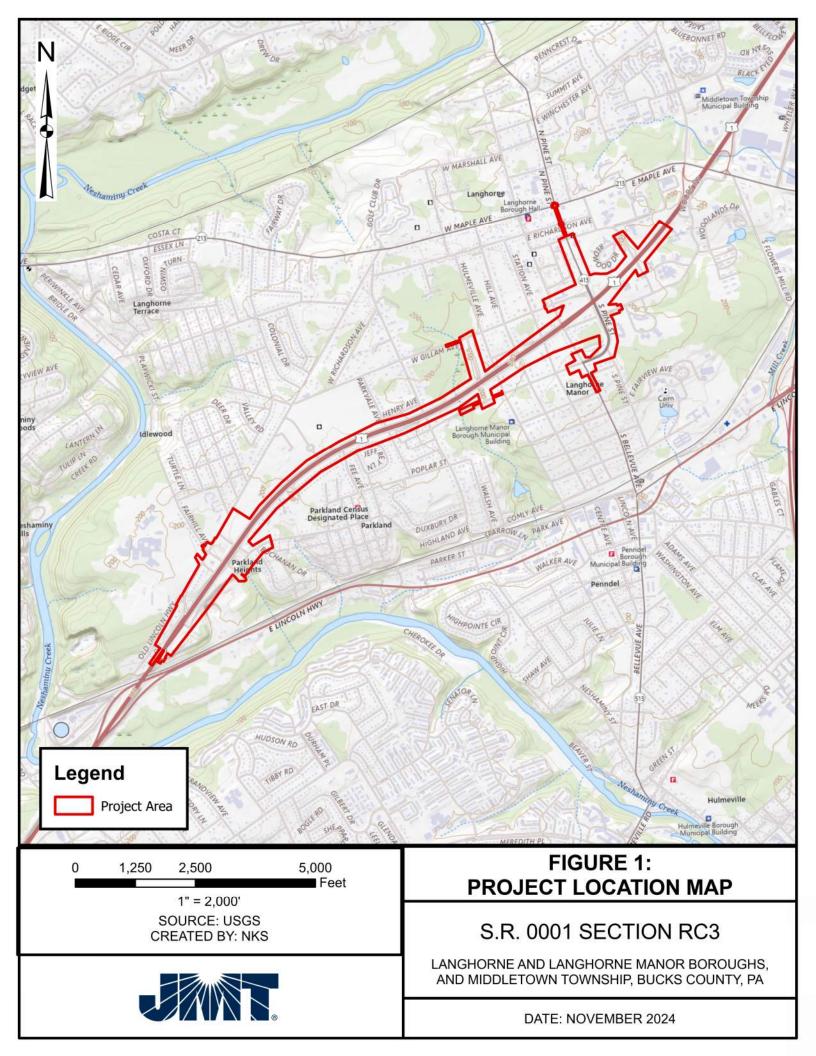
Consultant Qualifications Package Resumes

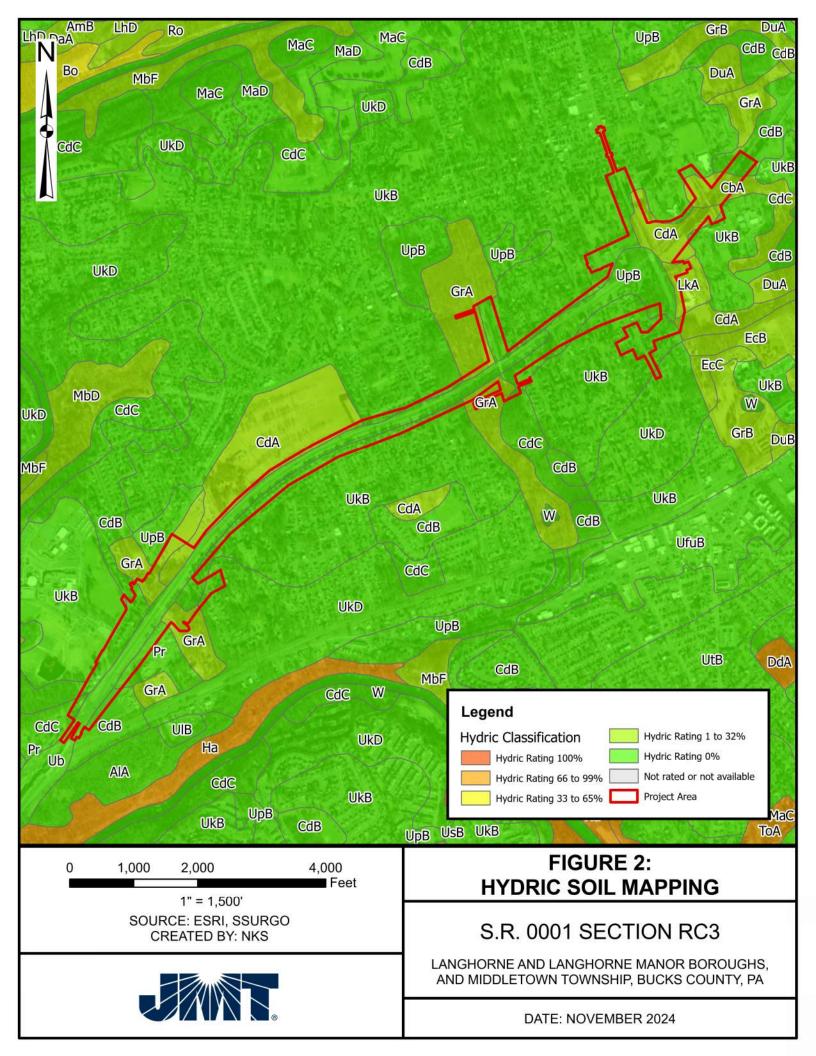
CE BRPA document.

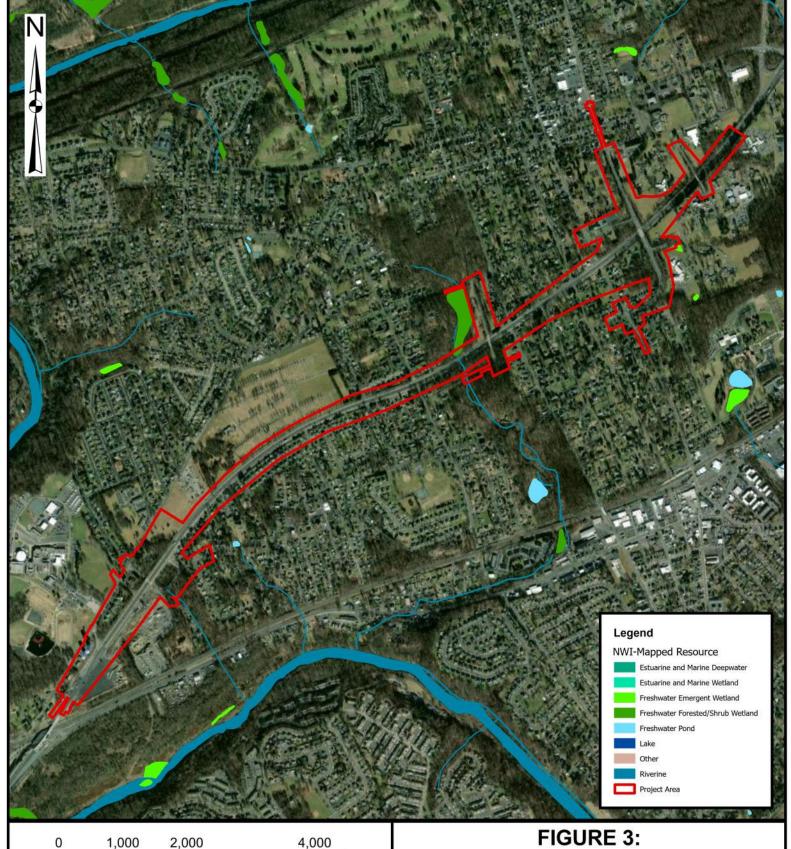
S.R. 0216, Section 016 Sticks Road Bridge Replacement, PennDOT District 8-0, Codorus Township, PA: Environmental Scientist. Responsible for the identification and delineation of all waters of the U.S. on site, including wetlands. He conducted a Phase 1 Bog Turtle Habitat Assessment for the delineated wetlands and prepared a Wetland Identification and Delineation Report and Phase 1 Bog Turtle Habitat Assessment Report. Mr. Nein also led a Phase 2 Bog Turtle Survey to determine the presence/probable absence of the species within wetlands with potential habitat in the vicinity of the project area, and submitted a Phase 2 Bog Turtle Survey Report to the USFWS in order to obtain project clearance. Mr. Nein also prepared a Joint Permit Application for impacts to waterways and wetlands.

S.R. 2001, Section A15 Bunola River Road Bridge Replacement, PennDOT District 11-0, Forward, PA: Environmental Scientist. Responsible for the identification and delineation of all waters of the U.S. on site, including wetlands. Mr. Nein assisted with the preparation of a Wetland Identification and Delineation Report. He also completed a GP-11 permit application for encroachments to Perry Mill Run.

S.R. 2118, Section A02 Ripple Road Bridge Replacement, PennDOT District 11-0, White Oak, PA: Environmental Scientist. Responsible for the identification and delineation of all waters of the U.S. on site, including wetlands. Mr. Nein assisted with the preparation of a Wetland Identification and Delineation Report. He also assisted with the completion of a GP-11 permit application for encroachments to Long Run and adjacent tributaries.


Bog Turtle Construction Monitoring – Pipe Maintenance Project, Carroll County Dept. of Public Works, Union Mills, MD: Environmental Scientist. Mr. Nein acted as the Qualified Bog Turtle Surveyor on site during a maintenance project that involved the re-grouting of a structurally deficient culvert in Carroll County, Maryland. He attended a Pre-Construction Meeting with county contractors and Maryland Department of Natural Resources (MD DNR) staff to discuss the nature of the project and to highlight the importance of the bog turtle monitoring activities. Mr. Nein provided bog turtle monitoring services during all phases of the project to ensure that no bog turtles were harmed as a result of the construction project. Following the completion of the project, Mr. Nein prepared a construction monitoring report for Carroll County to submit to MD DNR.

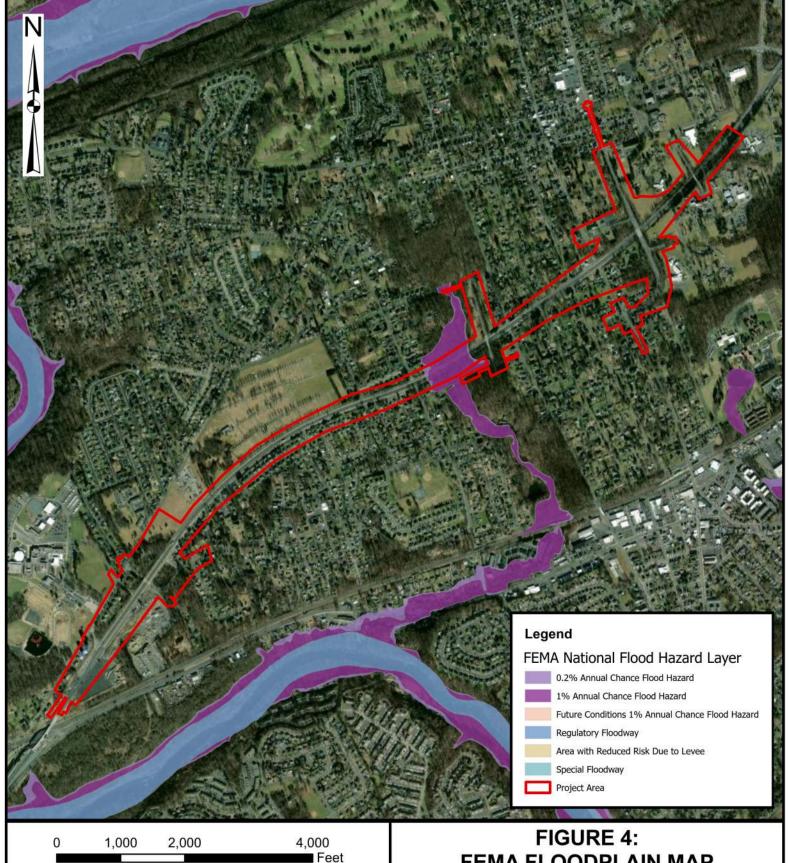

RCN Ranavirus Study, Maryland Department of Natural Resources, MD: Seasonal Biologist. Mr. Nein acted as the lead field biologist on a study investigating the distribution of *Ranavirus* in amphibian breeding ponds. Compiled known wood frog (*Lithobates sylvaticus*) breeding ponds in Maryland and conducted site randomization to select study ponds. Verified breeding at study ponds and assisted with collection of larval amphibian samples for disease analysis. Assisted with development of study protocol manual, permitting, site monitoring, GIS, and database management.


Bog Turtle Site Prioritization Project, U.S. Fish and Wildlife Service (USFWS), MD: Fish and Wildlife Biologist. Mr. Nein led an effort conducting a site prioritization project for bog turtle sites in Maryland. Compiled population and recruitment data for all known bog turtle sites in Maryland and ranked sites based on standardized criteria. Assisted USFWS staff with GIS work, reporting, and presentation of project methodology at regional recovery meeting. The results of the site prioritization are being used by state and federal personnel to help guide survey efforts, monitoring, management, and restoration at bog turtle sites in Maryland.

Appendix B Figures

■ Feet

1" = 1,500' SOURCE: ESRI, USFWS CREATED BY: NKS



NWI MAP

S.R. 0001 SECTION RC3

LANGHORNE AND LANGHORNE MANOR BOROUGHS, AND MIDDLETOWN TOWNSHIP, BUCKS COUNTY, PA

DATE: NOVEMBER 2024

1" = 1,500' SOURCE: ESRI, FEMA CREATED BY: NKS

FEMA FLOODPLAIN MAP

S.R. 0001 SECTION RC3

LANGHORNE AND LANGHORNE MANOR BOROUGHS, AND MIDDLETOWN TOWNSHIP, BUCKS COUNTY, PA

DATE: NOVEMBER 2024

Appendix C Wetland Determination Data Forms

WETLAND DETERMINATION DATA FORM – Eastern Mountains and Piedmont Region

Project/Site: SR 0001 Secti	on RC3 Imp	rovemer	nt Project City/C	county: Langhorne/B	ucks Co.	Sampling Date: 2021-04-19			
Applicant/Owner: PennDOT			-			ia Sampling Point: TP-1			
Investigator(s):Craig Nein, Miranda McKiernan Section, Township, Range:									
Landform (hillslope, terrace, etc.): Depression Local relief (concave, convex, none): Concave Slope (%): < 1									
Subragion (LDD or MLDA): S1	48	Lat. 4	<u> </u>						
Subregion (LRR or MLRA): S 148 Lat: 40.171833 Long: -74.914797 Datum: WGS 84 Soil Map Unit Name: CdA - Chester silt loam, 0 to 3 percent slopes NWI classification: N/A									
Are climatic / hydrologic condition	ns on the site	typical for	this time of year? Y						
Are Vegetation, Soil, or Hydrology significantly disturbed? Are "Normal Circumstances" present? Yes 🚩 No									
Are Vegetation, Soil	Are Vegetation, Soil, or Hydrology naturally problematic? (If needed, explain any answers in Remarks.)								
SUMMARY OF FINDINGS – Attach site map showing sampling point locations, transects, important features, etc.									
Hydrophytic Vegetation Prese Hydric Soil Present? Wetland Hydrology Present? Remarks:		s <u>/</u>	No No No	Is the Sampled Area within a Wetland?	Yes _	No			
Small PEM wetland maintained field.	(WET-E)	to the	north of SR	0001 and east	of Rte 413,	on edge of			
HYDROLOGY									
Wetland Hydrology Indicato					•	tors (minimum of two required)			
Primary Indicators (minimum o	f one is requir				Surface Soil Cracks (B6) Sparsely Vegetated Concave Surface (B8)				
Surface Water (A1)			rue Aquatic Plants (
High Water Table (A2)			lydrogen Sulfide Odd		Drainage Pat				
Saturation (A3)				es on Living Roots (C3)					
Water Marks (B1)			resence of Reduced			Water Table (C2)			
Sediment Deposits (B2)				n in Tilled Soils (C6)	Crayfish Burr				
Drift Deposits (B3) Algal Mat or Crust (B4)			hin Muck Surface (C other (Explain in Ren			sible on Aerial Imagery (C9) ressed Plants (D1)			
Iron Deposits (B5)		0	thei (Explain in Nei	ilaiks)	✓ Geomorphic				
Inundation Visible on Aeri	al Imagery (B7)							
Water-Stained Leaves (B)		,			Shallow Aquitard (D3) Microtopographic Relief (D4)				
Aquatic Fauna (B13)	',				FAC-Neutral				
Field Observations:									
Surface Water Present?	Yes 🗸 1	lo [Depth (inches): 1						
Water Table Present?			Depth (inches):						
Saturation Present?			Depth (inches): 0-4		Hydrology Presen	t? Yes <u>/</u> No			
(includes capillary fringe) Describe Recorded Data (stream gauge, monitoring well, aerial photos, previous inspections), if available: Google Earth 2021, Web Soil Survey of Bucks County Remarks:									
Multiple wetland hy	rarology	indicat	ors were me	et.					
Episaturation obse	rved due	to clay	soil layer.						
•		•	-						

Sami	alina	Point:	TP-1
Sallii	JIII IU	FUIIII.	

1		Absolute	Dominant	Indicator	Dominance Test worksheet:
1	Tree Stratum (Plot size: 5 ft r)	% Cover	Species?	Status	Number of Dominant Species
3	1				
\$ \$\frac{4}{4} \\ \frac{5}{5} \\ \frac{6}{6} \\ \frac{7}{7} \\ \frac{50\% of total cover:}{20\% of total cover:} \\ \frac{7}{20\% of to	2				Total Number of Dominant
5.	3				
That Are OBL_FACW, or FAC: 100 (AFE	A		-		Description of Description of Opening
Prevalence Index worksheet: Total % Cover of:	5	_			
Frevalence Index worksheet: Total Koover Total % Cover	6.				
Sapling/Shrub Stratum (Plot size: 5 ft r 20% of total cover:					
Sapling/Shrub Stratum (Plot size: 5 ft r) 1.			= Total Cov	er	
1	50% of total cover:	20% of	total cover:		
1.	Sapling/Shrub Stratum (Plot size: 5 ft r				
3	1				
3.	2.				
Column Totals: 95					UPL species 0 x 5 = 0
Prevalence Index = BJA = 1.8 Prevalence Index = BJA = 1.8 Hydrophytic Vegetation Indicators: 1 - Rapid Test for Hydrophytic Vegetation Y 2 - Dominance Test is >50%					Column Totals: <u>95</u> (A) <u>170</u> (B)
6.					10
7	^				
8 9 9	7		-		
9 = Total Cover 20% of total cover: 20% of total cover: 20% of total cover: 20% of total cover: 35	8				
Total Cover 20% of total cover: Solvation Solvati	•				
Solve of total cover: 20% of total cover: 4 Morphological Adaptations' (Provide supporting data in Remarks or on a separate sheet)	<u>. </u>		= Total Cov		
Herb Stratum (Plot size: 5 ft r 1. Juncus effusus 35	50% of total cover:				4 - Morphological Adaptations ¹ (Provide supporting
1. Juncus effusus 2 Typha latifolia 3 Juncus tenuis 4 Scirpus atrovirens 10 OBL 5 OBL 6 OBL 7 OBL 7 OBL 8 OBL 8 OBL 8 OBL 9 OBL 9 FACC OBL 9 FACC OBL 10 OBL 11 OBL 11 OBL 11 OBL 12 OBL 12 OBL 13 OBL 14 OBL 15 OBL 16 OBL 17 OBL 18 OBL 19 Indicators of hydric soil and wetland hydrology must be present, unless disturbed or problematic. Definitions of Four Vegetation Strata: Tree — Woody plants, excluding vines, 3 in. (7.6 cm) of more in diameter at breast height (DBH), regardless of height. Sapling/Shrub — Woody plants, excluding vines, less than 3 in. DBH and greater than or equal to 3.28 ft (1 m) tall. Woody Vine Stratum (Plot size: 5 ft r) 1. OBL 10 OBL 11 OBL 12 OBL 14 OBL 15 OBL 16 OBL 16 OBL 16 OBL 17 OBL 16 OBL 16 OBL 16 OBL 16 OBL 17 OBL 16 OBL		20 /0 01	total cover.		data in Remarks or on a separate sheet)
2 Typha latifolia 3 Juncus tenuis 2 O		35	~	FACW	Problematic Hydrophytic Vegetation ¹ (Explain)
3 Juncus tenuis 4 Scirpus atrovirens 10 OBL 5 General Scirpus atrovirens 10 OBL 5 General Scirpus atrovirens 10 OBL 6 General Scirpus atrovirens 10 OBL 7 General Scirpus atrovirens 10 OBL 7 General Scirpus atrovirens 10 OBL 11 General Scirpus atrovirens 10 OBL 12 General Scirpus atrovirens 10 OBL 14 General Scirpus atrovirens 10 OBL 15 General Scirpus atrovirens 10 OBL 16 General Scirpus atrovirens 10 OBL 16 General Scirpus atrovirens atrovirens atrovirens atrovirence in diameter at breast height (DBH), regardless of height. Sapling/Shrub – Woody plants, excluding vines, less than 3 in. DBH and greater than or equal to 3.28 ft (1 m) tall. Herb – All herbaceous (non-woody) plants, regardless of size, and woody plants less than 3.28 ft tall. Woody vine – All woody vines greater than 3.28 ft in height. Woody vine – All woody vines greater than 3.28 ft in height. Hydrophytic Vegetation Present? Yes V No	·	30	~	OBL	
4. Scirpus atrovirens 5. Definitions of Four Vegetation Strata: Tree – Woody plants, excluding vines, 3 in. (7.6 cm) of more in diameter at breast height (DBH), regardless of height. Sapling/Shrub – Woody plants, excluding vines, less than 3 in. DBH and greater than or equal to 3.28 ft (1 m) tall. ### Description of Four Vegetation Strata: Tree – Woody plants, excluding vines, less than 3 in. DBH and greater than or equal to 3.28 ft (1 m) tall. #### Description of Four Vegetation Strata: ##################################		20		FAC	
Tree – Woody plants, excluding vines, 3 in. (7.6 cm) of more in diameter at breast height (DBH), regardless of height. Sapling/Shrub – Woody plants, excluding vines, less than 3 in. DBH and greater than or equal to 3.28 ft (1 m) tall. Herb – All herbaceous (non-woody) plants, regardless of size, and woody plants less than 3.28 ft tall. Woody Vine Stratum (Plot size: 5 ft r) 1	·- <u>-</u>		-	OBL	
6	··				Definitions of Four Vegetation Strata:
more in diameter at breast height (DBH), regardless of height. Sapling/Shrub – Woody plants, excluding vines, less than 3 in. DBH and greater than or equal to 3.28 ft (1 m) tall. Herb – All herbaceous (non-woody) plants, regardless of size, and woody plants less than 3.28 ft tall. Woody Vine Stratum (Plot size: 5 ft r) 1					Tree – Woody plants, excluding vines, 3 in. (7.6 cm) or
8	~ <u></u>				more in diameter at breast height (DBH), regardless of
9	_		-		height.
10	·				Sapling/Shrub – Woody plants, excluding vines, less
11	···	-			, ,
Solid of total cover: 48 20% of total cover: 19 Woody Vine Stratum (Plot size: 5 ft r)	10				m) tall.
Moody Vine Stratum (Plot size: 5 ft r) Woody Vine Stratum (Plot size: 5 ft r) Woody Vine All woody vines greater than 3.28 ft in height. height. height. height. height.	11	050/			Herb – All herbaceous (non-woody) plants, regardless
Woody Vine Stratum (Plot size: 5 ft r) Woody vine - All woody vines greater than 3.28 ft in height. 1	40				of size, and woody plants less than 3.28 ft tall.
1	·	20% of	total cover:	19	Woody vine – All woody vines greater than 3.28 ft in
2	Woody Vine Stratum (Plot size: 5111)				height.
3					
4					
5 = Total Cover 50% of total cover: 20% of total cover:	3	-			
5					Hydrophytic
50% of total cover: 20% of total cover:	5				Vegetation
					Present? Yes V No No
Remarks: (Include photo numbers here or on a separate sheet.)	50% of total cover:	20% of	total cover:		
rtemants. (molaus prioto numbers nere or on a separate sneet.)	Remarks: (Include photo numbers here or on a separate	sheet.)			

Hydrophytic vegetation indicator was met.

Plot sizes reduced due to small size of wetland.

Profile Desc	ription: (Describe	to the dep	oth needed to docur	ment the	indicator	or confirn	n the absenc	e of indicators.)
Depth	Matrix			x Feature	es			
(inches)	Color (moist)	%	Color (moist)	%	Type ¹	<u>Loc²</u>	Texture	Remarks
0 - 10	10YR 5/2	80	10YR 6/8	20	С	M	Clay	
_					-			
				-	-			
								
_								
		· 		-				
						- ——		
_								
	-	· ——			-			-
	-							
¹ Type: C=Ce	oncentration, D=Dep	letion, RM	=Reduced Matrix, M	S=Maske	d Sand Gi	ains.	² Location:	PL=Pore Lining, M=Matrix.
Hydric Soil	Indicators:						Indi	cators for Problematic Hydric Soils ³ :
Histosol	(A1)		Dark Surface	e (S7)				2 cm Muck (A10) (MLRA 147)
	pipedon (A2)		Polyvalue Be		ace (S8) (I	MLRA 147 ,		Coast Prairie Redox (A16)
Black Hi			Thin Dark Su				, <u> </u>	(MLRA 147, 148)
Hydroge	n Sulfide (A4)		Loamy Gleye	ed Matrix	(F2)			Piedmont Floodplain Soils (F19)
Stratified	Layers (A5)		✓ Depleted Ma	trix (F3)				(MLRA 136, 147)
2 cm Mu	ick (A10) (LRR N)		Redox Dark	Surface (I	F6)			Very Shallow Dark Surface (TF12)
Depleted	d Below Dark Surfac	e (A11)	Depleted Da	rk Surface	e (F7)			Other (Explain in Remarks)
	ark Surface (A12)		Redox Depre	essions (F	8)			
Sandy M	lucky Mineral (S1) (I	_RR N,	Iron-Mangan	ese Mass	ses (F12)	(LRR N,		
	\ 147, 148)		MLRA 13	6)				
Sandy G	Gleyed Matrix (S4)		Umbric Surfa	ace (F13)	(MLRA 1	36, 122)	³ In	dicators of hydrophytic vegetation and
Sandy R	ledox (S5)		Piedmont Flo	oodplain S	Soils (F19)	(MLRA 14	48) w	vetland hydrology must be present,
	Matrix (S6)		Red Parent I	Material (F	=21) (MLF	RA 127, 147	7) u	nless disturbed or problematic.
Restrictive I	_ayer (if observed):							
Type:								
Depth (in	ches):						Hydric So	il Present? Yes 🗸 No
Remarks:	, -							
	ydric soil ind	icator	was met.					
• •	y an 10 0011 1110	.oato.	was mot.					

Project/Site: SR 0001 Sect	ion RC3 Improve	ment Project City/C	ounty: Langhorne/Bucl	ks Co.	Sampling Date: 2021-04-19	
Applicant/Owner: PennDOT						
Investigator(s): Craig Nein, M	iranda McKiernan		n, Township, Range:			
Landform (hillslope, terrace, etc					Slone (%)· < 1	
Subregion (LRR or MLRA): S					Datum: WGS 84	
Soil Map Unit Name: CdA - C						
Are climatic / hydrologic conditi						
Are Vegetation, Soil	, or Hydrology	significantly disturb	oed? Are "Normal C	circumstances" pr	resent? Yes No	
Are Vegetation, Soil	, or Hydrology	naturally problema	itic? (If needed, exp	plain any answer	s in Remarks.)	
SUMMARY OF FINDING	GS – Attach site	map showing sam	pling point location	s, transects,	important features, etc.	
Hydrophytic Vegetation Prese	ent? Yes	No 🗸				
Hydric Soil Present?	Yes	No ✓	Is the Sampled Area	Yes	No. 4	
Wetland Hydrology Present?	Yes	No ✓	within a Wetland?	res	No 🗸	
Remarks:						
Unmaintained field	to the south	of WET-E. Upla	and plot associat	ed with TP	?-1/WET-E.	
HYDROLOGY						
Wetland Hydrology Indicato			-		ors (minimum of two required)	
Primary Indicators (minimum	-			Surface Soil Cracks (B6)		
Surface Water (A1)		_ True Aquatic Plants (I			etated Concave Surface (B8)	
High Water Table (A2) Saturation (A3)	_	_ Hydrogen Sulfide Odd		_ Drainage Patt _ Moss Trim Lir		
Water Marks (B1)		Oxidized KnizospherePresence of Reduced			Vater Table (C2)	
Sediment Deposits (B2)		Recent Iron Reduction		Crayfish Burro		
Drift Deposits (B3)	_	Thin Muck Surface (C			sible on Aerial Imagery (C9)	
Algal Mat or Crust (B4)	_	 _ Other (Explain in Rem			ressed Plants (D1)	
Iron Deposits (B5)			·	Geomorphic F	Position (D2)	
Inundation Visible on Aer	ial Imagery (B7)		_	Shallow Aquit	ard (D3)	
Water-Stained Leaves (B	9)		_	Microtopograp	phic Relief (D4)	
Aquatic Fauna (B13)			_	FAC-Neutral	Test (D5)	
Field Observations:						
Surface Water Present?		Depth (inches):				
Water Table Present?		Depth (inches):			.,	
Saturation Present? (includes capillary fringe)	Yes No	Depth (inches):	Wetland Hy	drology Present	? Yes No	
Describe Recorded Data (street Google Earth 2021,				able:		
Remarks:						
No wetland hydrol	ogy indicators	s were met.				

Sami	nlina	Point:	TP-2
Jaiiii	ulliu	r Oll It.	

	Absolute	Dominant	Indicator	Dominance Test worksheet:
Tree Stratum (Plot size: 10 ft r		Species?		Number of Dominant Species
1.				That Are OBL, FACW, or FAC: 1 (A)
2				(,
				Total Number of Dominant Species Across All Strata: 3 (B)
3				Species Across All Strata: 3 (B)
4				Percent of Dominant Species
5				That Are OBL, FACW, or FAC: 33 (A/B)
6				Prevalence Index worksheet:
7				Total % Cover of: Multiply by:
		= Total Cov		
50% of total cover:	20% of	total cover:		OBL species x 1 =
Sapling/Shrub Stratum (Plot size: 10 ft r)				FACW species $\frac{0}{50}$ $\times 2 = \frac{0}{150}$
1. Rosa multiflora	15		FACU	FAC species 50 $\times 3 = 150$
2. Rubus phoenicolasius	15		FACU	FACU species 40 x 4 = 160
3				UPL species <u>0</u>
4				Column Totals: 90 (A) 310 (B)
5				
^				Prevalence Index = B/A = 3.4
7				Hydrophytic Vegetation Indicators:
1				1 - Rapid Test for Hydrophytic Vegetation
8				2 - Dominance Test is >50%
9				3 - Prevalence Index is ≤3.0 ¹
		= Total Cov		4 - Morphological Adaptations ¹ (Provide supporting
_	20% of	total cover:	6	data in Remarks or on a separate sheet)
Herb Stratum (Plot size: 5 ft r)				Problematic Hydrophytic Vegetation¹ (Explain)
1. Microstegium vimineum	50		FAC	1 Toblematic Trydrophytic Vegetation (Explain)
2. Solidago altissima	10		FACU	The disease of booking and conditioned booking to consider
3				¹ Indicators of hydric soil and wetland hydrology must be present, unless disturbed or problematic.
4				Definitions of Four Vegetation Strata:
5				Definitions of Four Vegetation Strata.
6				Tree – Woody plants, excluding vines, 3 in. (7.6 cm) or
~ <u></u>				more in diameter at breast height (DBH), regardless of
7				height.
8				Sapling/Shrub – Woody plants, excluding vines, less
9				than 3 in. DBH and greater than or equal to 3.28 ft (1
10				m) tall.
11				Herb – All herbaceous (non-woody) plants, regardless
		= Total Cov		of size, and woody plants less than 3.28 ft tall.
50% of total cover: 30	20% of	total cover:	12	Woody vine – All woody vines greater than 3.28 ft in
Woody Vine Stratum (Plot size: 10 ft r)				height.
1				
2				
3				
4				
5				Hydrophytic Vegetation
o				Present? Yes No
50% of total cover:		= Total Cover:		
Remarks: (Include photo numbers here or on a separate s		total cover.		

No hydrophytic vegetation indicators were met.

Plot sizes adjusted due to proximity of maintained lawn and roadway embankment.

Profile Desc	ription: (Describe	to the dep	oth needed to docur	ment the	indicator	or confirm	n the absence	e of indicate	ors.)	
Depth	Matrix		Redo	x Feature	s					
(inches)	Color (moist)	<u>%</u>	Color (moist)	%	Type ¹	Loc ²	Texture		Remarks	
0 - 4	10YR 4/3	100	2/				Silt Loam			
4 - 12	10YR 4/3	90	10YR 5/6	10	С	М	Silt Loam			
	-							- (-
·	-	- ——			·					
-										
								-		-
	-		-					_		
										_
1Typo: C=C	ncontration D=Don	lotion PM	=Reduced Matrix, M	S-Macko	d Sand Gr	nine	² Location:	DI =Doro Lini	ing, M=Matrix.	
Hydric Soil		ielion, Rivi	i=Reduced Matrix, Mi	5=Maske	u Sanu Gr	airis.			roblematic H	
-			Dark Surface	(07)						
Histosol	oipedon (A2)		Dark Surface Polyvalue Be		000 (SB) (N	II D A 1 <i>1</i> 7			A10) (MLRA 1 e Redox (A16)	
Black Hi			Polyvalde Be		. , .		, 140)	(MLRA 14		
	en Sulfide (A4)		Loamy Gleye			47, 140)		•	oodplain Soils	(F19)
	d Layers (A5)		Depleted Ma		(1 2)			(MLRA 13	•	(1 13)
	ick (A10) (LRR N)		Redox Dark		- 6)				v Dark Surface	(TF12)
	d Below Dark Surfac	e (A11)	Depleted Da						in in Remarks	
	ark Surface (A12)	- (Redox Depre				_			,
	lucky Mineral (S1) (I	_RR N,	Iron-Mangan			LRR N,				
-	A 147, 148)		MLRA 13		, , ,					
Sandy G	Bleyed Matrix (S4)		Umbric Surfa	ace (F13)	(MLRA 13	6, 122)	³ lr	dicators of h	ydrophytic veg	getation and
Sandy R	Redox (S5)		Piedmont Flo	oodplain S	Soils (F19)	(MLRA 14	48) v	etland hydro	ology must be	present,
Stripped	Matrix (S6)		Red Parent N	Material (F	21) (MLR	A 127, 14	7) u	nless disturb	ed or problem	atic.
Restrictive I	Layer (if observed):									
Type:										
Depth (inc	ches):						Hydric So	il Present?	Yes	No 🗸
Remarks:	,								<u>-</u>	
	o hydric soil	indica	tors were me	t.						
	o ny anto con	maioa	1010 11010 1110							

Project/Site: SR 0001 Secti	on RC3 Im	proven	nent Project City/C	ounty: Langhor	ne/Bucks Co	0. 5	Sampling Date: 2021-04-19	
Applicant/Owner: PennDOT							Sampling Point: TP-3	
Investigator(s):Craig Nein, Mi	randa McK	iernan						
Landform (hillslope, terrace, etc								
Subregion (LRR or MLRA): S 1	48	Los	. 40.170238	L one	~74 91703		Datum: WGS 84	
Soil Map Unit Name: UpB - U	rhan land.	La Glenvil	lle compley 0 to 8	nercent slone	g. <u>74.01700</u>		. N/A	
							•	
Are climatic / hydrologic condition								
Are Vegetation, Soil	, or Hydro	ology	significantly distur	bed? Are "N	Normal Circum	stances" pre	esent? Yes V No No	
Are Vegetation, Soil	, or Hydro	ology	naturally problema	atic? (If nee	eded, explain a	any answers	in Remarks.)	
SUMMARY OF FINDING	S – Attac	h site r	nap showing sam	npling point lo	ocations, tra	ansects, i	important features, etc.	
Hudrophytic Vagatation Brass	oto Y	es 🗸	No					
Hydrophytic Vegetation Prese Hydric Soil Present?		es 🗸	No —	Is the Sampled		V00 4	No	
Wetland Hydrology Present?	Υ	es 🔽	No —	within a Wetlan	d?	Yes _	No	
Remarks:								
PSS wetland area (WET-1)	locate	ed north of SR	0001 and e	east of Be	ellevue A	venue.	
HYDROLOGY								
Wetland Hydrology Indicato	rs:				Second	dary Indicato	ors (minimum of two required)	
Primary Indicators (minimum o	of one is requ					Surface Soil Cracks (B6)		
Surface Water (A1)			True Aquatic Plants (Sparsely Vegetated Concave Surface (B8)			
High Water Table (A2)			Hydrogen Sulfide Ode			ainage Patte		
Saturation (A3)			Oxidized Rhizosphere			oss Trim Line		
✓ Water Marks (B1)			Presence of Reduced		-	-	ater Table (C2)	
Sediment Deposits (B2) Drift Deposits (B3)			Recent Iron Reductio			ayfish Burrov		
✓ Algal Mat or Crust (B4)			Thin Muck Surface (C Other (Explain in Ren				ble on Aerial Imagery (C9) essed Plants (D1)	
Iron Deposits (B5)			_ Other (Explain in Nei	ilaiks)		eomorphic Po		
Inundation Visible on Aeri	al Imagery (P	7)				allow Aquita		
Water-Stained Leaves (B		. ,					hic Relief (D4)	
Aquatic Fauna (B13)	• •					C-Neutral To		
Field Observations:								
Surface Water Present?	Yes _ <	No	_ Depth (inches): 2					
Water Table Present?			Depth (inches): 8					
Saturation Present?	Yes	No	Depth (inches): 0-4		tland Hydrolog	gy Present?	? Yes No	
(includes capillary fringe) Describe Recorded Data (stre Google Earth 2021, V	am gauge, m	onitoring	well, aerial photos, pre	vious inspections)	•			
Remarks:								
Multiple wetland hy	/drology	indic	ators were me	et.				

Sampling Point: TP-3

<u>-</u>	Absolute	Dominant	Indicator	Dominance Test worksheet:
Tree Stratum (Plot size: 30 ft r)	% Cover	Species?		Number of Dominant Species
1. Acer negundo	20	✓	FAC	That Are OBL, FACW, or FAC: 4 (A)
2 Liquidambar styraciflua	5	~	FAC	
3.	-			Total Number of Dominant Species Across All Strata: 7 (B)
4				Opedies Across Air Strata.
				Percent of Dominant Species
5				That Are OBL, FACW, or FAC: 57 (A/B)
6	- 			Prevalence Index worksheet:
/	25%			Total % Cover of: Multiply by:
- 22/ 5/ 12		= Total Cove		OBL species $0 \times 1 = 0$
·	20% of	total cover:		FACW species 30 $x 2 = 60$
Sapling/Shrub Stratum (Plot size: 15 ft r				
1. Cornus amomum	20		FACW	1 AO SPECIES X 0 =
2. Rosa multiflora	10		FACU	FACU species $10 \times 4 = 40$
3. Acer negundo	5		FAC	UPL species <u>0</u> x 5 = <u>0</u>
4	- ·			Column Totals: <u>70</u> (A) <u>190</u> (B)
5				
				Prevalence Index = B/A = 2.7
6				Hydrophytic Vegetation Indicators:
7				1 - Rapid Test for Hydrophytic Vegetation
8	- ——			✓ 2 - Dominance Test is >50%
9				✓ 3 - Prevalence Index is ≤3.0 ¹
		= Total Cove		4 - Morphological Adaptations ¹ (Provide supporting
· · · · · · · · · · · · · · · · · · ·	20% of	total cover:	7	data in Remarks or on a separate sheet)
Herb Stratum (Plot size: 5 ft r)				•
1. Persicaria sp.	40			Problematic Hydrophytic Vegetation ¹ (Explain)
2. Juncus effusus	10	~	FACW	
3	· ·			¹ Indicators of hydric soil and wetland hydrology must
4				be present, unless disturbed or problematic.
				Definitions of Four Vegetation Strata:
5				Tree – Woody plants, excluding vines, 3 in. (7.6 cm) or
6				more in diameter at breast height (DBH), regardless of
7				height.
8				Sapling/Shrub – Woody plants, excluding vines, less
9				than 3 in. DBH and greater than or equal to 3.28 ft (1
10				m) tall.
11				Herb – All herbaceous (non-woody) plants, regardless
	50%	= Total Cove	er	of size, and woody plants less than 3.28 ft tall.
50% of total cover: 25		total cover:		
Woody Vine Stratum (Plot size: 30 ft r)		_	<u> </u>	Woody vine – All woody vines greater than 3.28 ft in
1 Vitis sp.	5	~		height.
''				
2				
3				
4	- ——			Hydrophytic
5	· 			Vegetation
		= Total Cove		Present? Yes _ No
50% of total cover: 3	20% of	total cover:	1	

Remarks: (Include photo numbers here or on a separate sheet.)

Hydrophytic vegetation indicator was met.

Note: although Persicaria and Vitis were not ID'd to species (given indicator status of NI), the plot still satisfies the Dominance Test indicator with those observations included in the calculations.

Profile Desc	ription: (Describe	to the dep	th needed to docur	nent the i	ndicator	or confirm	the absence	of indicators.)
Depth	Matrix		Redo	x Feature	s			
(inches)	Color (moist)	%	Color (moist)	%	Type ¹	Loc ²	Texture	Remarks
0 - 8	10YR 4/2	85	5YR 4/6	15	С	PL / M	Silt Loam	
8 - 12	10YR 4/2	65	5YR 4/6	10	С	М	Silt Loam	
12 - 16	10YR 5/4	85	10YR 6/8	10	С	M		10 YR 4/2 redox depletion's 5 %
	<u> </u>					·		· · · · · · · · · · · · · · · · · · ·
						·		
						·		
	-						-	
-								
_								
						·		
1- 0.0							2, "	
Type: C=Co		letion, RM	=Reduced Matrix, MS	S=Masked	Sand Gr	ains.		_=Pore Lining, M=Matrix. ators for Problematic Hydric Soils ³ :
_			Dark Curfood	(07)				-
Histosol	oipedon (A2)		Dark Surface Polyvalue Be		ce (S8) (N	/II RΔ 1/47		cm Muck (A10) (MLRA 147) oast Prairie Redox (A16)
Black His	. , ,		Tolyvalde Be					(MLRA 147, 148)
	n Sulfide (A4)		Loamy Gleye			· · · · ,	Pi	iedmont Floodplain Soils (F19)
	Layers (A5)		✓ Depleted Ma					(MLRA 136, 147)
	ck (A10) (LRR N)		Redox Dark	•	,			ery Shallow Dark Surface (TF12)
	Below Dark Surface	e (A11)	Depleted Date				0	ther (Explain in Remarks)
	ark Surface (A12) lucky Mineral (S1) (L	DD N	Redox Depre Iron-Mangan			I DD N		
	147, 148)	-NN IN,	MLRA 13		es (i iz) (LKK N,		
	Gleyed Matrix (S4)		Umbric Surfa	•	MLRA 13	36, 122)	³ Indi	cators of hydrophytic vegetation and
	ledox (S5)		Piedmont Flo					tland hydrology must be present,
Stripped	Matrix (S6)		Red Parent N	Material (F	21) (MLR	A 127, 147	') unl	ess disturbed or problematic.
Restrictive L	_ayer (if observed):							
Type:			<u></u>					_
Depth (inc	ches):		<u></u>				Hydric Soil	Present? Yes V No No
Remarks:							1	
H	ydric soil ind	icator	was met.					

Project/Site: SR 0001 Secti	on RC3 Impi	oveme	ent Project City/C	county: Langh	orne/Bucks	s Co.	Sampling Date: 2021-04-19	
Applicant/Owner: PennDOT							nia Sampling Point: TP-4	
Investigator(s):Craig Nein, Mi	randa McKie	rnan						
Landform (hillslope, terrace, etc								
Subregion (LRR or MLRA): S1	48	l at·	40.171032				Datum: WGS 84	
Soil Map Unit Name: UpB - U	rhan land-G	Lau lenville	complex 0 to 8					
						=		
Are climatic / hydrologic condition								
Are Vegetation, Soil	, or Hydrold	gy	significantly distur	bed? Are	e "Normal Cire	cumstances" p	resent? Yes No	
Are Vegetation, Soil	, or Hydrold	gy	naturally problema	atic? (If r	needed, expla	ain any answer	rs in Remarks.)	
SUMMARY OF FINDING	S – Attach	site ma	ap showing sam	npling point	locations	, transects	, important features, etc	
Hudrophytic Vagatation Brass	nt? Yes	~	No					
Hydrophytic Vegetation Prese Hydric Soil Present?	Yes		No —	Is the Sample		V00 4	No	
Wetland Hydrology Present?	Yes	~	No —	within a Wetla	and?	Yes _	_ No	
Remarks:								
Mixed PFO/PEM we	tland (Wl	ET-2)	located nort	h of SR 00	001 and	west of R	tte 413.	
HYDROLOGY								
Wetland Hydrology Indicato						Secondary Indicators (minimum of two required)		
Primary Indicators (minimum o	of one is require					Surface Soil Cracks (B6)		
Surface Water (A1)			True Aquatic Plants (Sparsely Vegetated Concave Surface (B8)Drainage Patterns (B10)			
High Water Table (A2) Saturation (A3)			Hydrogen Sulfide Od Oxidized Rhizospher			_		
✓ Saturation (A3) ✓ Water Marks (B1)			Presence of Reduced		ots (C3)		Water Table (C2)	
Sediment Deposits (B2)			Recent Iron Reductio		(C6)	Crayfish Burr		
Drift Deposits (B3)			Thin Muck Surface (C		(55)	-	sible on Aerial Imagery (C9)	
Algal Mat or Crust (B4)			Other (Explain in Rer		_		tressed Plants (D1)	
Iron Deposits (B5)					<u> </u>	Geomorphic	Position (D2)	
Inundation Visible on Aeri	al Imagery (B7)					Shallow Aqui	tard (D3)	
Water-Stained Leaves (B))						phic Relief (D4)	
Aquatic Fauna (B13)						FAC-Neutral	Test (D5)	
Field Observations:	./		1.4					
Surface Water Present?			Depth (inches): 1-4					
Water Table Present?			Depth (inches): 6					
Saturation Present? (includes capillary fringe)	Yes N	·—	Depth (inches): 2	\ \	Vetland Hydr	rology Presen	t? Yes V No	
Describe Recorded Data (stre Google Earth 2021, V					ns), if availab	le:		
Remarks:								
Multiple wetland hy	/drology i	ndica	tors were me	et.				

Samp	lina	Doint.	TP-4
Samo	mu	Poirit.	· · · · ·

20.64	Absolute	Dominant		Dominance Test worksheet:
Tree Stratum (Plot size: 30 ft r		Species?		Number of Dominant Species _
1. Acer rubrum	50		FAC	That Are OBL, FACW, or FAC: 5 (A)
2. Liquidambar styraciflua	15		FAC	Total Niverban of Dansin and
3				Total Number of Dominant Species Across All Strata: 6 (B)
4				Openies / torous / tir otrata.
				Percent of Dominant Species
5				That Are OBL, FACW, or FAC: 83 (A/B)
6				Prevalence Index worksheet:
7				
		= Total Cov		Total % Cover of: Multiply by:
50% of total cover: 33	20% of	total cover:	13	OBL species $\frac{5}{x}$ $x = \frac{5}{x}$
Sapling/Shrub Stratum (Plot size: 15 ft r				FACW species 40 x 2 = 80
1. Cornus amomum	10	~	FACW	FAC species $70 x 3 = 210$
2. Alnus serrulata	5		OBL	FACU species 0 x 4 = 0
	5			UPL species $0 \times 5 = 0$
3. Malus sp.	<u> </u>			
4				Column Totals: <u>115</u> (A) <u>295</u> (B)
5				December 26
6				Prevalence Index = B/A = 2.6
				Hydrophytic Vegetation Indicators:
7				1 - Rapid Test for Hydrophytic Vegetation
8				✓ 2 - Dominance Test is >50%
9				✓ 3 - Prevalence Index is ≤3.0 ¹
	20%	= Total Cov	er	_
50% of total cover: 10	20% of	total cover:	4	4 - Morphological Adaptations ¹ (Provide supporting
Herb Stratum (Plot size: 5 ft r	<u></u>			data in Remarks or on a separate sheet)
1. Juncus effusus	30	~	FACW	Problematic Hydrophytic Vegetation ¹ (Explain)
	5		FAC	
2. Microstegium vimineum	- —			¹ Indicators of hydric soil and wetland hydrology must
3				be present, unless disturbed or problematic.
4				Definitions of Four Vegetation Strata:
5				Definitions of Four Vegetation Strata.
				Tree – Woody plants, excluding vines, 3 in. (7.6 cm) or
6				more in diameter at breast height (DBH), regardless of
7				height.
8				Sapling/Shrub – Woody plants, excluding vines, less
9				than 3 in. DBH and greater than or equal to 3.28 ft (1
10				m) tall.
11.				
111.	35%	T-4-1 O		Herb – All herbaceous (non-woody) plants, regardless of size, and woody plants less than 3.28 ft tall.
50% of total cover: 18		= Total Cov total cover:		of size, and woody plants less than 3.20 it tall.
	20% 01	total cover:	<u>, </u>	Woody vine – All woody vines greater than 3.28 ft in
Woody Vine Stratum (Plot size: 30 ft r)				height.
1				
2				
3				
4				Hydrophytic
5				Vegetation Present? Yes ✓ No
		= Total Cov		Present? Yes Vo No
50% of total cover:	20% of	total cover:		
Remarks: (Include photo numbers here or on a separate	sheet.)			
Hydrophytic vegetation indicator wa	s met.			

Profile Desc	ription: (Describe	to the dep	th needed to docur	nent the	indicator	or confirm	the absence o	f indicators.)
Depth	Matrix			x Feature	S			
(inches)	Color (moist)	%	Color (moist)	%	Type ¹	Loc ²	Texture	Remarks
0 - 4	10YR 4/2	95	5YR 4/6	5	С	PL / M	Silt Loam	
4 - 10	10YR 5/2	80	7.5YR 4/6	20	С	PL / M	Silty Clay Loam	
10 - 16	10YR 5/3	70	10YR 6/6	30	С	М	Silty Clay	
-								
				-				
				-				
	-							
						· ——		_
						· <u></u>		
				-				
		letion, RM	=Reduced Matrix, MS	S=Masked	d Sand Gr	ains.		Pore Lining, M=Matrix.
Hydric Soil I								ors for Problematic Hydric Soils ³ :
Histosol			Dark Surface					m Muck (A10) (MLRA 147)
	oipedon (A2)		Polyvalue Be					ast Prairie Redox (A16)
Black Hi			Thin Dark Su			147, 148)		MLRA 147, 148)
	n Sulfide (A4)		Loamy Gleye		(FZ)			dmont Floodplain Soils (F19)
	d Layers (A5) ick (A10) (LRR N)		✓ Depleted Marger Redox Dark States Redox Dark States ✓ Depleted Marger Redox Dark States Output Depleted Marger Redox Dark States Depleted Marger Redox Dark States Redox Dark States		-6\			(MLRA 136, 147) ry Shallow Dark Surface (TF12)
	d Below Dark Surfac	Δ (Δ11)	Redox Dark Depleted Dar	•	,			ner (Explain in Remarks)
	ark Surface (A12)	O (7111)	Redox Depre		. ,		0"	ici (Explain in Nomano)
	lucky Mineral (S1) (I	LRR N.	Iron-Mangan			LRR N.		
-	\ 147, 148)	,	MLRA 13			,,		
	Bleyed Matrix (S4)		Umbric Surfa		(MLRA 13	86, 122)	³ Indic	ators of hydrophytic vegetation and
	ledox (S5)		Piedmont Flo					and hydrology must be present,
-	Matrix (S6)		Red Parent N					ss disturbed or problematic.
Restrictive I	_ayer (if observed):	:						
Type:								
Depth (inc	ches):						Hydric Soil P	resent? Yes V No No
Remarks:	, .						1	
	ydric soil ind	licator	was met.					
	•							

Project/Site: SR 0001 Section RC3 Improvement Project City/0	County: Langhorne/Bucks Co. Sampling Date: 2021-04-19
Applicant/Owner: PennDOT	State: Pennsylvania Sampling Point: TP-5
	on, Township, Range:
Landform (hillslope, terrace, etc.): Upland, Flat Local rel	
	Long: -74.915769 Datum: WGS 84
Soil Map Unit Name: UpB - Urban land-Glenville complex, 0 to 8	
Are climatic / hydrologic conditions on the site typical for this time of year?	
Are Vegetation, Soil, or Hydrology significantly disturbed.	bed? Are "Normal Circumstances" present? Yes No
Are Vegetation, Soil, or Hydrology naturally problem	atic? (If needed, explain any answers in Remarks.)
SUMMARY OF FINDINGS – Attach site map showing san	npling point locations, transects, important features, etc.
Hydrophytic Vegetation Present? Yes No	
Hydric Soil Present? Yes V No	Is the Sampled Area within a Wetland? Yes No
Wetland Hydrology Present? Yes No ✔	within a Wetland?
Remarks:	
Forested area north of WET-2. Upland plot associated v	vith TP-4/WFT-2
Hydric soil and hydrophytic vegetation parameters were	
were met.	, satisfied, flowever, flo wettand flydrology flidicators
HYDROLOGY	
Wetland Hydrology Indicators:	Secondary Indicators (minimum of two required)
Primary Indicators (minimum of one is required; check all that apply)	Surface Soil Cracks (B6)
Surface Water (A1) True Aquatic Plants	
High Water Table (A2) Hydrogen Sulfide Oc	
Saturation (A3) Oxidized Rhizospher	
Water Marks (B1) Presence of Reduce Sediment Deposits (B2) Recent Iron Reduction	
Sediment Deposits (B2) Recent Iron Reduction Drift Deposits (B3) Thin Muck Surface (in	
Algal Mat or Crust (B4) Other (Explain in Re	
Iron Deposits (B5)	Geomorphic Position (D2)
Inundation Visible on Aerial Imagery (B7)	Shallow Aquitard (D3)
Water-Stained Leaves (B9)	Microtopographic Relief (D4)
Aquatic Fauna (B13)	FAC-Neutral Test (D5)
Field Observations:	
Surface Water Present? Yes No Depth (inches):	
Water Table Present? Yes No Depth (inches):	
Saturation Present? Yes No Depth (inches):	Wetland Hydrology Present? Yes No
(includes capillary fringe) Describe Recorded Data (stream gauge, monitoring well, aerial photos, pre	
Google Earth 2021, Web Soil Survey of Bucks Cou	unty
Remarks:	
No wetland hydrology indicators were met.	
, ,,	

Samp	lina	Point:	TP-5
Sallib	III IU	FUILL.	

00.6	Absolute	Dominant		Dominance Test worksheet:
Tree Stratum (Plot size: 30 ft r)		Species?		Number of Dominant Species
1. Catalpa speciosa	30		FAC	That Are OBL, FACW, or FAC: 3 (A)
2. Liquidambar styraciflua	10		FAC	Total Number of Dominant
3. Acer rubrum	5		FAC	Species Across All Strata: 5 (B)
4				Percent of Dominant Species
5				That Are OBL, FACW, or FAC: 60 (A/B)
6	· .			
7				Prevalence Index worksheet:
	45%	= Total Cov	er	Total % Cover of: Multiply by:
50% of total cover: 23	20% of	total cover:	9	OBL species $0 \times 1 = 0$
Sapling/Shrub Stratum (Plot size: 15 ft r				FACW species $0 \times 2 = 0$
1. Catalpa speciosa	20		FAC	FAC species <u>73</u> x 3 = <u>219</u>
2. Rosa multiflora	10	~	FACU	FACU species <u>35</u> x 4 = <u>140</u>
3. Rubus phoenicolasius	5		FACU	UPL species 0 x 5 = 0
4	-			Column Totals: 108 (A) 359 (B)
5				Prevalence Index = B/A = 3.3
6				Hydrophytic Vegetation Indicators:
7				1 - Rapid Test for Hydrophytic Vegetation
8				✓ 2 - Dominance Test is >50%
9	0 = 0/			3 - Prevalence Index is ≤3.0 ¹
		= Total Cov		4 - Morphological Adaptations ¹ (Provide supporting
50% of total cover: 18	20% of	total cover:		data in Remarks or on a separate sheet)
Herb Stratum (Plot size: 5 ft r)			E 4 O L L	Problematic Hydrophytic Vegetation ¹ (Explain)
1. Allium canadense	20		FACU	1 residing try drophy to vegetation (Explain)
2. Microstegium vimineum	5		FAC	¹ Indicators of hydric soil and wetland hydrology must
3. Lactuca serriola	3		FAC	be present, unless disturbed or problematic.
4	_ (Definitions of Four Vegetation Strata:
5				Seminoris of Four Vogetation Guata.
6				Tree – Woody plants, excluding vines, 3 in. (7.6 cm) or
7				more in diameter at breast height (DBH), regardless of height.
8				g
	- (Sapling/Shrub – Woody plants, excluding vines, less
9	-			than 3 in. DBH and greater than or equal to 3.28 ft (1 m) tall.
10				
11	28%			Herb – All herbaceous (non-woody) plants, regardless
50% of total cover: 14		= Total Cov total cover:		of size, and woody plants less than 3.28 ft tall.
	20% 01	lotal cover.		Woody vine - All woody vines greater than 3.28 ft in
Woody Vine Stratum (Plot size: 30 ft r)				height.
1				
2				
3				
4				Hydrophytic
5	- ——			Vegetation
		= Total Cov	er	Present? Yes _ No
50% of total cover:	20% of	total cover:		
Remarks: (Include photo numbers here or on a separate	sheet.)			
Hydrophytic vegetation indicator wa	c mot			
Trydrophytic vegetation indicator wa	is illet.			

Profile Desc	ription: (Describe	to the dep	th needed to docur	ment the i	indicator	or confirm	the absence	of indicators.)
Depth	Matrix	-		x Feature				,
(inches)	Color (moist)	<u>%</u>	Color (moist)	%	Type ¹	Loc ²	Texture	Remarks
0 - 6	10YR 4/2	98	7.5YR 5/4	2	С	PL / M	Silt Loam	
6 - 12	10YR 5/3	75	10YR 5/6	25	С	М	Silt Loam	
12 - 16	10YR 5/6	60	10YR 5/3	40	D	M	Silty Clay Loam	
-						· 		
-								
-		-						
1							2 –	
		letion, RM	=Reduced Matrix, MS	S=Masked	d Sand Gr	ains.		PL=Pore Lining, M=Matrix.
Hydric Soil I			Davida Occident	(07)				ators for Problematic Hydric Soils ³ :
Histosol	(A1) ipedon (A2)		Dark Surface Polyvalue Be		.co (SS) (N	AI DA 147		2 cm Muck (A10) (MLRA 147) Coast Prairie Redox (A16)
Black His			Thin Dark Su				140)	(MLRA 147, 148)
	n Sulfide (A4)		Loamy Gleye			141, 140)	F	Piedmont Floodplain Soils (F19)
	Layers (A5)		<u>✓</u> Depleted Ma		(- –)		<u> </u>	(MLRA 136, 147)
	ck (A10) (LRR N)		Redox Dark		- 6)		\	/ery Shallow Dark Surface (TF12)
	Below Dark Surface	e (A11)	Depleted Da				(Other (Explain in Remarks)
	rk Surface (A12)		Redox Depre					
-	lucky Mineral (S1) (L	.RR N,	Iron-Mangan		es (F12) (LRR N,		
	147, 148)		MLRA 13		/MI DA 40)C 400\	31	diantara of budrarabutia variation and
-	leyed Matrix (S4) edox (S5)		Umbric Surfa Piedmont Flo					dicators of hydrophytic vegetation and etland hydrology must be present,
-	Matrix (S6)		Red Parent N					nless disturbed or problematic.
	ayer (if observed):		1100 1 010111	viateriai (i	Z I) (III Z I		1	need distarbed of problematic.
Type:	, , , , , , , , , , , , , , , , , , , ,							
Depth (inc	ches).						Hydric Soi	I Present? Yes ✓ No
Remarks:							1.,	
	ydric soil ind	icator	was met.					
	,							

Project/Site: SR 0001 Section RC3 Improvement Project Cit	y/County: Langhorne/Bucks Co. Sampling Date: 2021-05-04					
Applicant/Owner: PennDOT	State: Pennsylvania Sampling Point: TP-6					
Investigator(s):Craig Nein, Ginny Boone Se	ection, Township, Range:					
	relief (concave, convex, none): Concave Slope (%): < 1					
Subregion (LRR or MLRA): S 148 Lat: 40.154862	Long:74.945814 Datum: WGS 84					
Soil Map Unit Name: CdB- Chester silt loam, 3 to 8 percent sl	opes NWI classification: N/A					
Are climatic / hydrologic conditions on the site typical for this time of year?	Yes No (If no, explain in Remarks.)					
	sturbed? Are "Normal Circumstances" present? Yes No					
Are Vegetation, Soil, or Hydrology naturally proble						
	ampling point locations, transects, important features, etc.					
Hydrophytic Vegetation Present? Yes V No						
Hydrophytic Vegetation Present? Hydric Soil Present? Yes Yes No No	Is the Sampled Area					
Wetland Hydrology Present? Yes ✓ No	within a Wetland? Yes No					
Remarks:						
Small PEM wetland (WET-A) in low depression that discharges into WUS-8. Sparsely vegetated in the actual wetland, which is fringed by trees and shrubs. Located north of SR 0001, near the southwestern end of the study area.						
HYDROLOGY						
Wetland Hydrology Indicators:	Secondary Indicators (minimum of two required)					
Primary Indicators (minimum of one is required; check all that apply)	Surface Soil Cracks (B6)					
Surface Water (A1) True Aquatic Plan	ts (B14) Sparsely Vegetated Concave Surface (B8)					
High Water Table (A2) Hydrogen Sulfide						
	neres on Living Roots (C3) Moss Trim Lines (B16)					
Water Marks (B1) Presence of Redu						
	ction in Tilled Soils (C6) Crayfish Burrows (C8)					
Drift Deposits (B3) Thin Muck Surface						
Algal Mat or Crust (B4) Other (Explain in F	Remarks) Stunted or Stressed Plants (D1) Geomorphic Position (D2)					
Iron Deposits (B5) Inundation Visible on Aerial Imagery (B7)	Shallow Aquitard (D3)					
✓ Water-Stained Leaves (B9)	Microtopographic Relief (D4)					
Aquatic Fauna (B13)	FAC-Neutral Test (D5)					
Field Observations:						
Surface Water Present? Yes No Depth (inches): 2						
Water Table Present? Yes ✓ No Depth (inches): 0						
Saturation Present? Yes V No Depth (inches): 0						
(includes capillary fringe) Describe Recorded Data (stream gauge, monitoring well, aerial photos, previous inspections), if available:						
Google Earth 2021, Web Soil Survey of Bucks C	ounty					
Multiple wetland hydrology indicators were n	net					
Water table and saturation observed at the s						
Water table and saturation observed at the s	urrace.					

Samn	lina	Point:	TP-6
Janu	ıllı lu	r Oll IL.	•

010 ft	Absolute	Dominant		Dominance Test worksheet:
Tree Stratum (Plot size: 3 x 10 ft 1)	% Cover			Number of Dominant Species That Are OBL, FACW, or FAC: 2 (A)
2				Total Number of Dominant Species Across All Strata: 2 (B)
4				
5			·	Percent of Dominant Species That Are OBL, FACW, or FAC: 100 (A/B)
6				Prevalence Index worksheet:
7		= Total Cov		Total % Cover of: Multiply by:
50% of total cover:				OBL species 0 x 1 = 0
Sapling/Shrub Stratum (Plot size: 3 x 10 ft				FACW species <u>0</u>
1				FAC species <u>5</u>
2				FACU species $0 \times 4 = 0$
3				UPL species 0 x 5 = 0
4				Column Totals: <u>5</u> (A) <u>15</u> (B)
5				Prevalence Index = B/A = 3.0
6				Hydrophytic Vegetation Indicators:
7				1 - Rapid Test for Hydrophytic Vegetation
8				✓ 2 - Dominance Test is >50%
9				✓ 3 - Prevalence Index is ≤3.0 ¹
	:	= Total Cov	er	4 - Morphological Adaptations ¹ (Provide supporting
50% of total cover:	20% of	total cover		data in Remarks or on a separate sheet)
Herb Stratum (Plot size: 3 x 10 ft)				Problematic Hydrophytic Vegetation¹ (Explain)
1. Toxicodendron radicans	_ 3		FAC	Problematic Hydrophytic Vegetation (Explain)
2. Acer rubrum	2		FAC	¹ Indicators of hydric soil and wetland hydrology must
3				be present, unless disturbed or problematic.
4				Definitions of Four Vegetation Strata:
5				
6				Tree – Woody plants, excluding vines, 3 in. (7.6 cm) or more in diameter at breast height (DBH), regardless of
7				height.
8				Sapling/Shrub – Woody plants, excluding vines, less
9				than 3 in. DBH and greater than or equal to 3.28 ft (1
10				m) tall.
11				Herb – All herbaceous (non-woody) plants, regardless
		= Total Cov		of size, and woody plants less than 3.28 ft tall.
50% of total cover: 3	20% of	total cover	1	Woody vine – All woody vines greater than 3.28 ft in
Woody Vine Stratum (Plot size: 3 x 10 ft)				height.
1				
2				
3				
4				Hydrophytic
5				Vegetation No. No. No.
50% of total cover:	:			Present? Yes V No No
Remarks: (Include photo numbers here or on a separate		total cover	·	
, , ,	ŕ			
Hydrophytic vegetation indicator wa	as met.			
Wetland is primarily non-vegetated.				
, , , , , , , ,				

Sampling Point: TP-6

epth	Matrix	%		x Feature:		Loc ²	Taustu	Demonto
inches)	Color (moist)		Color (moist)	<u>%</u>	Type ¹	LOC	<u>Texture</u>	Remarks
0 - 4	10YR 2/1	100					Silt Loam	Some organic content
4 - 14	10YR 3/2	90	7.5YR 5/6	10	<u>C</u>	PL / M	Silt Loam	
-								
_						<u> </u>		
				-	-			
-								
-								
	-							
	-		· 					
	-							
pe: C=Cc	oncentration, D=De	pletion, RM	1=Reduced Matrix, M	S=Masked	Sand Gr	ains.	² Location: P	L=Pore Lining, M=Matrix.
	Indicators:							ators for Problematic Hydric Soils ³ :
Histosol	(A1)		Dark Surface	e (S7)			2	cm Muck (A10) (MLRA 147)
	oipedon (A2)		Polyvalue Be	. ,	ce (S8) (N	VILRA 147.		Coast Prairie Redox (A16)
Black His			Thin Dark Su					(MLRA 147, 148)
_	n Sulfide (A4)		Loamy Gleye			, -,	Р	riedmont Floodplain Soils (F19)
	d Layers (A5)		Depleted Ma		,			(MLRA 136, 147)
	ick (A10) (LRR N)		✓ Redox Dark	, ,	6)		V	ery Shallow Dark Surface (TF12)
	d Below Dark Surfa	ce (A11)	Depleted Da	rk Surface	(F7)		<u> </u>	Other (Explain in Remarks)
Thick Da	ark Surface (A12)		Redox Depre	essions (F	8)			
Sandy M	Mucky Mineral (S1)	(LRR N,	Iron-Mangan	ese Mass	es (F12) ((LRR N,		
MLRA	A 147, 148)		MLRA 13	6)				
	Gleyed Matrix (S4)		Umbric Surfa	-	MLRA 13	36, 122)	³ Ind	icators of hydrophytic vegetation and
_ Sandy G				ace (F13) (icators of hydrophytic vegetation and etland hydrology must be present,
Sandy G Sandy R	Gleyed Matrix (S4)		Umbric Surfa	ace (F13) (codplain S	oils (F19)	(MLRA 14	8) we	
Sandy G Sandy R Stripped	Bleyed Matrix (S4) Redox (S5)):	Umbric Surfa Piedmont Flo	ace (F13) (codplain S	oils (F19)	(MLRA 14	8) we	etland hydrology must be present,
Sandy G Sandy R Stripped	Gleyed Matrix (S4) Redox (S5) Matrix (S6)):	Umbric Surfa Piedmont Flo	ace (F13) (codplain S	oils (F19)	(MLRA 14	8) we	etland hydrology must be present,
Sandy G Sandy R Stripped estrictive L Type:	Bleyed Matrix (S4) Redox (S5) Matrix (S6) Layer (if observed):	Umbric Surfa Piedmont Flo	ace (F13) (codplain S	oils (F19)	(MLRA 14	8) we ') un	etland hydrology must be present, less disturbed or problematic.
Sandy G Sandy R Stripped Strictive L Type: Depth (incommarks:	Gleyed Matrix (S4) Redox (S5) Matrix (S6) Layer (if observed		Umbric Surfa Piedmont Flo Red Parent I	ace (F13) (codplain S	oils (F19)	(MLRA 14	8) we	etland hydrology must be present, less disturbed or problematic.
Sandy G Sandy R Stripped Strictive L Type: Depth (incomarks:	Bleyed Matrix (S4) Redox (S5) Matrix (S6) Layer (if observed		Umbric Surfa Piedmont Flo Red Parent I	ace (F13) (codplain S	oils (F19)	(MLRA 14	8) we ') un	etland hydrology must be present, less disturbed or problematic.
Sandy G Sandy R Stripped Strictive L Type: Depth (incomarks:	Gleyed Matrix (S4) Redox (S5) Matrix (S6) Layer (if observed		Umbric Surfa Piedmont Flo Red Parent I	ace (F13) (codplain S	oils (F19)	(MLRA 14	8) we ') un	etland hydrology must be present, less disturbed or problematic.
Sandy G Sandy R Stripped Strictive L Type: Depth (incomarks:	Gleyed Matrix (S4) Redox (S5) Matrix (S6) Layer (if observed		Umbric Surfa Piedmont Flo Red Parent I	ace (F13) (codplain S	oils (F19)	(MLRA 14	8) we ') un	etland hydrology must be present, less disturbed or problematic.
Sandy G Sandy R Stripped Strictive L Type: Depth (incomarks:	Gleyed Matrix (S4) Redox (S5) Matrix (S6) Layer (if observed		Umbric Surfa Piedmont Flo Red Parent I	ace (F13) (codplain S	oils (F19)	(MLRA 14	8) we ') un	etland hydrology must be present, less disturbed or problematic.
Sandy G Sandy R Stripped Strictive L Type: Depth (incomarks:	Gleyed Matrix (S4) Redox (S5) Matrix (S6) Layer (if observed		Umbric Surfa Piedmont Flo Red Parent I	ace (F13) (codplain S	oils (F19)	(MLRA 14	8) we ') un	etland hydrology must be present, less disturbed or problematic.
Sandy G Sandy R Stripped Strictive L Type: Depth (incomarks:	Gleyed Matrix (S4) Redox (S5) Matrix (S6) Layer (if observed		Umbric Surfa Piedmont Flo Red Parent I	ace (F13) (codplain S	oils (F19)	(MLRA 14	8) we ') un	etland hydrology must be present, less disturbed or problematic.
Sandy G Sandy R Stripped Strictive L Type: Depth (incomarks:	Gleyed Matrix (S4) Redox (S5) Matrix (S6) Layer (if observed		Umbric Surfa Piedmont Flo Red Parent I	ace (F13) (codplain S	oils (F19)	(MLRA 14	8) we ') un	etland hydrology must be present, less disturbed or problematic.
Sandy G Sandy R Stripped strictive L Type: Depth (incomarks:	Gleyed Matrix (S4) Redox (S5) Matrix (S6) Layer (if observed		Umbric Surfa Piedmont Flo Red Parent I	ace (F13) (codplain S	oils (F19)	(MLRA 14	8) we ') un	etland hydrology must be present, less disturbed or problematic.
Sandy G Sandy R Stripped Strictive L Type: Depth (incomarks:	Gleyed Matrix (S4) Redox (S5) Matrix (S6) Layer (if observed		Umbric Surfa Piedmont Flo Red Parent I	ace (F13) (codplain S	oils (F19)	(MLRA 14	8) we ') un	etland hydrology must be present, less disturbed or problematic.
Sandy G Sandy R Stripped Strictive L Type: Depth (incomarks:	Gleyed Matrix (S4) Redox (S5) Matrix (S6) Layer (if observed		Umbric Surfa Piedmont Flo Red Parent I	ace (F13) (codplain S	oils (F19)	(MLRA 14	8) we ') un	etland hydrology must be present, less disturbed or problematic.
Sandy G Sandy R Stripped Strictive L Type: Depth (incomarks:	Gleyed Matrix (S4) Redox (S5) Matrix (S6) Layer (if observed		Umbric Surfa Piedmont Flo Red Parent I	ace (F13) (codplain S	oils (F19)	(MLRA 14	8) we ') un	etland hydrology must be present, less disturbed or problematic.
Sandy G Sandy R Stripped Strictive L Type: Depth (incommarks:	Gleyed Matrix (S4) Redox (S5) Matrix (S6) Layer (if observed		Umbric Surfa Piedmont Flo Red Parent I	ace (F13) (codplain S	oils (F19)	(MLRA 14	8) we ') un	etland hydrology must be present, less disturbed or problematic.
_ Sandy G _ Sandy R _ Stripped estrictive L Type: Depth (inc	Gleyed Matrix (S4) Redox (S5) Matrix (S6) Layer (if observed		Umbric Surfa Piedmont Flo Red Parent I	ace (F13) (codplain S	oils (F19)	(MLRA 14	8) we ') un	etland hydrology must be present, less disturbed or problematic.
Sandy G Sandy R Stripped estrictive L Type: Depth (incommarks:	Gleyed Matrix (S4) Redox (S5) Matrix (S6) Layer (if observed		Umbric Surfa Piedmont Flo Red Parent I	ace (F13) (codplain S	oils (F19)	(MLRA 14	8) we ') un	etland hydrology must be present, less disturbed or problematic.
_ Sandy G _ Sandy R _ Stripped estrictive L Type: Depth (inc	Gleyed Matrix (S4) Redox (S5) Matrix (S6) Layer (if observed		Umbric Surfa Piedmont Flo Red Parent I	ace (F13) (codplain S	oils (F19)	(MLRA 14	8) we ') un	etland hydrology must be present, less disturbed or problematic.
Sandy G Sandy R Stripped Strictive L Type: Depth (incommarks:	Gleyed Matrix (S4) Redox (S5) Matrix (S6) Layer (if observed		Umbric Surfa Piedmont Flo Red Parent I	ace (F13) (codplain S	oils (F19)	(MLRA 14	8) we ') un	etland hydrology must be present, less disturbed or problematic.
Sandy G Sandy R Stripped Strictive L Type: Depth (incomarks:	Gleyed Matrix (S4) Redox (S5) Matrix (S6) Layer (if observed		Umbric Surfa Piedmont Flo Red Parent I	ace (F13) (codplain S	oils (F19)	(MLRA 14	8) we ') un	etland hydrology must be present, less disturbed or problematic.
Sandy G Sandy R Stripped Strictive L Type: Depth (incomarks:	Gleyed Matrix (S4) Redox (S5) Matrix (S6) Layer (if observed		Umbric Surfa Piedmont Flo Red Parent I	ace (F13) (codplain S	oils (F19)	(MLRA 14	8) we ') un	etland hydrology must be present, less disturbed or problematic.
Sandy G Sandy R Stripped Strictive L Type: Depth (incomarks:	Gleyed Matrix (S4) Redox (S5) Matrix (S6) Layer (if observed		Umbric Surfa Piedmont Flo Red Parent I	ace (F13) (codplain S	oils (F19)	(MLRA 14	8) we ') un	etland hydrology must be present, less disturbed or problematic.

Project/Site: SR 0001 Section RC3 Improvement Project/Site:	oject City/County: Lane	ghorne/Bucks Co.	Sampling Date: 2021-05-04			
Applicant/Owner: PennDOT		State: Pennsylvani				
Ousin Nain Oinne Danna	Section, Township					
Landform (hillslope, terrace, etc.): Hillslope		=	Slone (%): 4			
Subregion (LRR or MLRA): S 148 Lat: 40.15		Long: <u>-74.945838</u>				
Soil Map Unit Name: CdB- Chester silt loam, 3 to 8 pt	ercent slones	Long. 74.040000	N/A			
Are climatic / hydrologic conditions on the site typical for this tire						
Are Vegetation, Soil, or Hydrology sign	ificantly disturbed?	Are "Normal Circumstances" pr	esent? Yes No			
Are Vegetation, Soil, or Hydrology natu	rally problematic?	(If needed, explain any answer	s in Remarks.)			
SUMMARY OF FINDINGS – Attach site map sh	owing sampling poi	nt locations, transects,	important features, etc.			
Hydrophytic Vegetation Present? Yes No	V					
Hydrophytic Vegetation Present? Hydric Soil Present? Yes No No	Is the Sam	-	No. 4			
Wetland Hydrology Present? Yes No	within a w	etland? Yes	No 🗸			
Remarks:						
Vegetated hill slope to the southwest of WET-A. Upland plot associated with TP-6/WET-A.						
HYDROLOGY			(; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;			
Wetland Hydrology Indicators:	and A	·	ors (minimum of two required)			
Primary Indicators (minimum of one is required; check all that		Surface Soil C	, ,			
	quatic Plants (B14) en Sulfide Odor (C1)	Sparsely vego	etated Concave Surface (B8)			
	d Rhizospheres on Living I	_				
	ce of Reduced Iron (C4)		Vater Table (C2)			
	Iron Reduction in Tilled Sc					
	uck Surface (C7)	Saturation Vis	ible on Aerial Imagery (C9)			
Algal Mat or Crust (B4) Other (Explain in Remarks)	Stunted or Str	essed Plants (D1)			
Iron Deposits (B5)		Geomorphic F				
Inundation Visible on Aerial Imagery (B7)		Shallow Aquit				
Water-Stained Leaves (B9)			phic Relief (D4)			
Aquatic Fauna (B13)		FAC-Neutral	Test (D5)			
Field Observations:	(in all a a).					
Surface Water Present? Yes No Depth Water Table Present? Yes No Depth	(inches):					
Saturation Present? Yes No Depth		Wetland Hydrology Present	? Yes No			
(includes capillary fringe)		,	: 165 NO			
Describe Recorded Data (stream gauge, monitoring well, aer Google Earth 2021, Web Soil Survey of B		tions), if available:				
Remarks:	uono o o unity.					
No wetland hydrology indicators were	mat					
Ind wettand hydrology malcators were	met.					

Samn	lina	Point:	TP-7
Sallib	III IU	PUIIIL.	,

45 4	Absolute	Dominant		Dominance Test worksheet:
Tree Stratum (Plot size: 15 ft r)		Species?	Status 5.40	Number of Dominant Species
1. Acer negundo	10		FAC	That Are OBL, FACW, or FAC: 3 (A)
2. Acer platanoides			UPL	Total Number of Dominant
3. Liriodendron tulipifera	5		FACU	Species Across All Strata: 9 (B)
4		-		Percent of Dominant Species
5				That Are OBL, FACW, or FAC: 33 (A/B)
6				Prevalence Index worksheet:
7				
		= Total Cov	-	Total % Cover of: Multiply by:
	20% of	total cover:	4	OBL species $0 \times 1 = 0$
Sapling/Shrub Stratum (Plot size: 15 ft r				FACW species $\frac{0}{30}$ $\times 2 = \frac{0}{00}$
1. Rubus phoenicolasius	40		FACU	FAC species $\frac{30}{105}$ x 3 = $\frac{90}{500}$
_{2.} Lonicera maackii	15		UPL	FACU species 125 x 4 = 500
3. Rosa multiflora	15		FACU	UPL species 25 x 5 = 125
4 _. Robinia pseudoacacia	5		FACU	Column Totals: 180 (A) 715 (B)
5				Prevalence Index = B/A = 4.0
6				
7				Hydrophytic Vegetation Indicators:
8				1 - Rapid Test for Hydrophytic Vegetation
9.				2 - Dominance Test is >50%
	75%	= Total Cov	<u></u>	3 - Prevalence Index is ≤3.01
50% of total cover: 38		total cover:		4 - Morphological Adaptations ¹ (Provide supporting
Herb Stratum (Plot size: 5 ft r)				data in Remarks or on a separate sheet)
1. Alliaria petiolata	40	~	FACU	Problematic Hydrophytic Vegetation ¹ (Explain)
2. Ageratina altissima	10		FACU	
3 Lonicera japonica	10	-	FACU	¹ Indicators of hydric soil and wetland hydrology must
4 Artemisia vulgaris	5	•	UPL	be present, unless disturbed or problematic.
5	-	•		Definitions of Four Vegetation Strata:
6				Tree – Woody plants, excluding vines, 3 in. (7.6 cm) or
7		-		more in diameter at breast height (DBH), regardless of height.
8				noight.
9.	-			Sapling/Shrub – Woody plants, excluding vines, less
10.				than 3 in. DBH and greater than or equal to 3.28 ft (1 m) tall.
		-		
11	65%	Total Cau		Herb – All herbaceous (non-woody) plants, regardless of size, and woody plants less than 3.28 ft tall.
50% of total cover: 33		= Total Cov total cover:		of size, and woody plants less than 3.20 it tall.
Woody Vine Stratum (Plot size: 15 ft r)	20 /0 01	total cover.		Woody vine – All woody vines greater than 3.28 ft in
1 Vitis vulpina	15	~	FAC	height.
2 Toxicodendron radicans	5		FAC	
- '	- —		1710	
3		•		
4		·		Hydrophytic
5	20%			Vegetation Present? Yes No _✓
F00/ - 51-1-1		= Total Cov		11030111: 163 140
50% of total cover: 10	20% of	total cover:	-	

No hydrophytic vegetation indicators were met.

Profile Desc	ription: (Describe	to the dep	th needed to docur	nent the	indicator	or confirn	m the absence	of indicators.)
Depth	Matrix		Redo	x Feature	es			
(inches)	Color (moist)	%	Color (moist)	%	Type ¹	Loc ²	Texture	Remarks
0 - 3	10YR 3/2	100					Silt Loam	
3 - 8	10YR 4/3	85	10YR 6/6	15	С	M	Silt Loam	
8 - 14	10YR 4/4	70	10YR 6/6	30	С	M	Loam	Potential fill material at base of soil profile.
		·						
		· ——						-
								
	-							
-								
¹Type: C=Co	oncentration D=Den	letion RM	=Reduced Matrix, MS	S=Maske	d Sand Gr	ains	² Location: Pl	L=Pore Lining, M=Matrix.
Hydric Soil		iction, raw	-reduced Matrix, Me	3-Maske	a Garia Gi	uiiio.		ators for Problematic Hydric Soils ³ :
Histosol			Dark Surface	(\$7)				cm Muck (A10) (MLRA 147)
	pipedon (A2)		Polyvalue Be		ace (S8) (N	II RA 147		oast Prairie Redox (A16)
Black Hi			Thin Dark Su				,	(MLRA 147, 148)
	n Sulfide (A4)		Loamy Gleye			,,	Р	iedmont Floodplain Soils (F19)
	d Layers (A5)		Depleted Ma		(-)			(MLRA 136, 147)
	ick (A10) (LRR N)		Redox Dark		F6)		V	ery Shallow Dark Surface (TF12)
	d Below Dark Surface	e (A11)	Depleted Dar					ther (Explain in Remarks)
Thick Da	ark Surface (A12)	, ,	Redox Depre					, ,
Sandy M	lucky Mineral (S1) (L	RR N,	Iron-Mangan	ese Mass	ses (F12) (LRR N,		
MLRA	A 147, 148)		MLRA 13	6)				
Sandy G	Bleyed Matrix (S4)		Umbric Surfa	ce (F13)	(MLRA 13	6, 122)	³ Indi	icators of hydrophytic vegetation and
	tedox (S5)		Piedmont Flo	odplain S	Soils (F19)	(MLRA 14	48) we	tland hydrology must be present,
Stripped	Matrix (S6)		Red Parent N	Material (F	-21) (MLR	A 127, 14	7) unl	ess disturbed or problematic.
Restrictive I	_ayer (if observed):							
Type:								
Depth (inc	ches):						Hydric Soil	Present? Yes No
Remarks:			<u> </u>					
	o hvdric soil	indica ⁻	tors were me	t.				
	-				filo			
P	otentiai fiii m	ateriai	in base of so	on pro	riie.			

Project/Site: SR 0001 Section RC3 Improvement Project City	//County: Langhorne/Bucks Co. Sampling Date: 2021-05-04
Applicant/Owner: PennDOT	State: Pennsylvania Sampling Point: TP-8
Investigator(s):Craig Nein, Ginny Boone Sec	
	relief (concave, convex, none): Concave Slope (%): < 1
	Long:74.943323
Soil Map Unit Name: GrA- Glenville silt loam, 0 to 3 percent slo	opes NWI classification: N/A
Are climatic / hydrologic conditions on the site typical for this time of year?	Yes No (If no, explain in Remarks.)
	turbed? Are "Normal Circumstances" present? Yes No
Are Vegetation, Soil, or Hydrology naturally proble	
	ampling point locations, transects, important features, etc.
Hydrophytic Vegetation Present? Hydric Soil Present? Wetland Hydrology Present? Remarks: Yes No Yes No Remarks:	Is the Sampled Area within a Wetland? Yes No
Low-lying floodplain area alongside WUS-6, to the nor wetland hydrology parameter was not satisfied and no was determined to occur in uplands.	
HYDROLOGY	Occasional to the state (minimum of two manying d)
Wetland Hydrology Indicators:	Secondary Indicators (minimum of two required)
Primary Indicators (minimum of one is required; check all that apply) Surface Water (A1) True Aquatic Plants	Surface Soil Cracks (B6)
Surface Water (A1) True Aquatic Plants High Water Table (A2) Hydrogen Sulfide C	
	eres on Living Roots (C3) Moss Trim Lines (B16)
Water Marks (B1) Presence of Reduc	
Sediment Deposits (B2) Recent Iron Reduc	
Drift Deposits (B3) Thin Muck Surface	
Algal Mat or Crust (B4) Other (Explain in R	
Iron Deposits (B5)	Geomorphic Position (D2)
Inundation Visible on Aerial Imagery (B7)	Shallow Aquitard (D3)
Water-Stained Leaves (B9)	Microtopographic Relief (D4)
Aquatic Fauna (B13)	FAC-Neutral Test (D5)
Field Observations:	
Surface Water Present? Yes No Depth (inches):	
Water Table Present? Yes No Depth (inches): 14	<u> </u>
Saturation Present? Yes No Depth (inches): (includes capillary fringe)	Wetland Hydrology Present? Yes No
Describe Recorded Data (stream gauge, monitoring well, aerial photos, p	
Google Earth 2021, Web Soil Survey of Bucks Co	ounty
Remarks:	
No wetland hydrology indicators were met.	

Samr	olina	Point:	TP-8
Jann	лич	r Oll IL.	

40.6	Absolute	Dominant		Dominance Test worksheet:
Tree Stratum (Plot size: 10 ft r		Species?		Number of Dominant Species _
1. Acer platanoides	10		UPL	That Are OBL, FACW, or FAC: 5 (A)
2. Acer negundo	5		FAC	Total Number of Dominant
3				Species Across All Strata: 6 (B)
4				
5				Percent of Dominant Species That Are OBL FACW or FAC: 83 (A/B)
				That Are OBL, FACW, or FAC: 83 (A/B)
6		-	· ——	Prevalence Index worksheet:
7	450/			Total % Cover of: Multiply by:
_		= Total Cov		
	20% of	total cover		
Sapling/Shrub Stratum (Plot size: 10 ft r				1710 W species X 2
1. Viburnum recognitum	15		FAC	FAC species $\frac{75}{2}$ $\times 3 = \frac{225}{2}$
2. Lindera benzoin	5	•	FAC	FACU species <u>0</u>
3	- (UPL species 25 x 5 = 125
				Column Totals: 160 (A) 410 (B)
4				()
5				Prevalence Index = B/A = 2.6
6			<u> </u>	Hydrophytic Vegetation Indicators:
7				1 - Rapid Test for Hydrophytic Vegetation
8				✓ 2 - Dominance Test is >50%
9				
	000/	= Total Cov	/er	✓ 3 - Prevalence Index is ≤3.0 ¹
50% of total cover: 10	20% of			4 - Morphological Adaptations ¹ (Provide supporting
Herb Stratum (Plot size: 5 ft r)		10101 00101		data in Remarks or on a separate sheet)
1. Symplocarpus foetidus	60	~	OBL	Problematic Hydrophytic Vegetation ¹ (Explain)
	50		FAC	
2. Ficaria verna				¹ Indicators of hydric soil and wetland hydrology must
3. Pachysandra terminalis	15		UPL	be present, unless disturbed or problematic.
4				Definitions of Four Vegetation Strata:
5				Definitions of Four Vegetation Ordia.
6				Tree – Woody plants, excluding vines, 3 in. (7.6 cm) or
				more in diameter at breast height (DBH), regardless of
7				height.
8				Sapling/Shrub – Woody plants, excluding vines, less
9				than 3 in. DBH and greater than or equal to 3.28 ft (1
10				m) tall.
11				Herb – All herbaceous (non-woody) plants, regardless
	125%	= Total Cov	er er	of size, and woody plants less than 3.28 ft tall.
50% of total cover: 63	20% of			W
Woody Vine Stratum (Plot size: 10 ft r				Woody vine – All woody vines greater than 3.28 ft in height.
1				neight.
2				
3				
4				Hydrophytic
5				Vegetation
		= Total Cov	er er	Present? Yes V No
50% of total cover:	20% of	total cover		
Remarks: (Include photo numbers here or on a separate	sheet.)			
Hydrophytic vegetation indicator wa	is met.			

Profile Desc	ription: (Describe	to the dep	oth needed to docur	nent the	indicator	or confirm	the absence	of indicators.)
Depth	Matrix		Redo	x Feature	S			
(inches)	Color (moist)	%	Color (moist)	%	Type ¹	Loc ²	Texture	Remarks
0 - 5	10YR 2/2	100	-				Silt Loam	
5 - 7	10YR 3/3	85	7.5YR 4/6	15	С	<u>M</u>	Silt Loam	Small rock fragments
7 - 17	10YR 3/2	85	7.5YR 3/4	15	С	PL / M	Silt Loam	
-								
_								
					-	-		
								
	-							
		letion, RM	=Reduced Matrix, M	S=Masked	d Sand Gra	ains.		L=Pore Lining, M=Matrix.
Hydric Soil								ators for Problematic Hydric Soils ³ :
Histosol			Dark Surface		(00) (cm Muck (A10) (MLRA 147)
	oipedon (A2)		Polyvalue Be				148) C	oast Prairie Redox (A16)
Black Hi	stic (A3) en Sulfide (A4)		Thin Dark Su Loamy Gleye			47, 148)	Б	(MLRA 147, 148) iedmont Floodplain Soils (F19)
	d Layers (A5)		Loanly Gleye		,FZ)			(MLRA 136, 147)
	ick (A10) (LRR N)		✓ Redox Dark		-6)		V	ery Shallow Dark Surface (TF12)
	d Below Dark Surfac	e (A11)	Depleted Da	•	,			other (Explain in Remarks)
Thick Da	ark Surface (A12)		Redox Depre					,
-	lucky Mineral (S1) (I	LRR N,	Iron-Mangan		es (F12) (LRR N,		
	\ 147, 148)		MLRA 13				2	
-	Gleyed Matrix (S4)		Umbric Surfa					icators of hydrophytic vegetation and
-	Redox (S5)		Piedmont Flo					tland hydrology must be present,
	Matrix (S6) Layer (if observed)	-	Red Parent N	viateriai (F	·21) (MLR	A 127, 147	/) un	less disturbed or problematic.
Type:	Layer (ii observeu)	•						
Depth (inc	choc):						Hydric Soil	Present? Yes No No
	Ciles)						Hyuric 30ii	rieseitt: TesNO
Remarks:	ydric soil ind	licator	was met					
• • •	yano son mo	iloutoi	was met.					

Project/Site: SR 0001 Section RC3 Improvement Project City/Co	Dunty: Langhorne/Bucks Co. Sampling Date: 2021-05-04
	State: Pennsylvania Sampling Point: TP-9
	n, Township, Range:
Landform (hillslope, terrace, etc.): Depression Local relie	
Subregion (LRR or MLRA): S 148 Lat: 40.165916	
Soil Map Unit Name: UkB- Urban land-Chester complex, 0 to 8 p	Datum. We significant stones
•	
Are climatic / hydrologic conditions on the site typical for this time of year? Yes $\frac{1}{2}$	
Are Vegetation, Soil, or Hydrology significantly disturb	ed? Are "Normal Circumstances" present? Yes No
Are Vegetation, Soil, or Hydrology naturally problema	tic? (If needed, explain any answers in Remarks.)
SUMMARY OF FINDINGS – Attach site map showing sam	pling point locations, transects, important features, etc.
Hydrophytic Vegetation Present? Yes <u>✓</u> No	
Hydric Soil Present? Yes V No	Is the Sampled Area within a Wetland? Yes ✓ No
Wetland Hydrology Present? Yes V No	within a wettand?
Remarks:	
PFO wetland (WET-3) in central portion of stud	y area, on north side of SR 0001.
HYDROLOGY	
Wetland Hydrology Indicators:	Secondary Indicators (minimum of two required)
Primary Indicators (minimum of one is required; check all that apply)	Surface Soil Cracks (B6)
Surface Water (A1) True Aquatic Plants (E	
✓ High Water Table (A2) — Hydrogen Sulfide Odo — Ovidinal Phisosphere	
✓ Saturation (A3) Oxidized Rhizosphere ✓ Water Marks (B1) Presence of Reduced	s on Living Roots (C3) Moss Trim Lines (B16)
Sediment Deposits (B2) Recent Iron Reduction	
Drift Deposits (B3) Thin Muck Surface (C	
Algal Mat or Crust (B4) Other (Explain in Rem	
Iron Deposits (B5)	Geomorphic Position (D2)
Inundation Visible on Aerial Imagery (B7)	Shallow Aquitard (D3)
<u>✓</u> Water-Stained Leaves (B9)	✓ Microtopographic Relief (D4)
Aquatic Fauna (B13)	FAC-Neutral Test (D5)
Field Observations:	
Surface Water Present? Yes No Depth (inches): 1-4	
Water Table Present? Yes No Depth (inches): 1	
Saturation Present? Yes No Depth (inches): 0	
Describe Recorded Data (stream gauge, monitoring well, aerial photos, prev Google Earth 2021, Web Soil Survey of Bucks Cou	
Remarks:	•
Multiple wetland hydrology indicators were me	t.
Hydrology supplied by groundwater springs/se	eps. seasonally high water table, and surface
runoff.	, g
Tullott.	

Samn	lina	Point:	TP-9
Janu	ıllı lu	r Oll IL.	

· ,	Absolute	• Dominant	Indicator	Dominance Test worksheet:
Tree Stratum (Plot size: 30 ft r	% Cover	Species?		Number of Dominant Species
1. Acer rubrum	25		FAC	That Are OBL, FACW, or FAC: 4 (A)
2. Liquidambar styraciflua	5		FAC	Total Number of Dominant
3				Species Across All Strata: 4 (B)
4				Dergant of Deminant Species
5	_			Percent of Dominant Species That Are OBL, FACW, or FAC: 100 (A/B)
6	_			
7	_			Prevalence Index worksheet:
	30%	= Total Cov	er	Total % Cover of: Multiply by:
50% of total cover: 15	20% of	total cover:	6	OBL species $\frac{70}{10}$ $\times 1 = \frac{70}{10}$
Sapling/Shrub Stratum (Plot size: 15 ft r)				FACW species 10 $x = 20$
1. Lindera benzoin	5	~	FAC	FAC species 50 $\times 3 = 150$
2	_			FACU species $0 \times 4 = 0$
3				UPL species <u>0</u> x 5 = <u>0</u>
4				Column Totals: 130 (A) 240 (B)
5				5 50 18
6				Prevalence Index = B/A = 1.8
7				Hydrophytic Vegetation Indicators:
8				1 - Rapid Test for Hydrophytic Vegetation
9		-		✓ 2 - Dominance Test is >50%
o	5%	= Total Cov		3 - Prevalence Index is ≤3.0¹
50% of total cover: 3				4 - Morphological Adaptations ¹ (Provide supporting
Herb Stratum (Plot size: 5 ft r)				data in Remarks or on a separate sheet)
1. Symplocarpus foetidus	70	~	OBL	Problematic Hydrophytic Vegetation ¹ (Explain)
2. Ficaria verna	10		FAC	
3 Impatiens capensis	10		FACW	¹ Indicators of hydric soil and wetland hydrology must
4. Grass sp.	5			be present, unless disturbed or problematic.
5		-		Definitions of Four Vegetation Strata:
6				Tree – Woody plants, excluding vines, 3 in. (7.6 cm) or
**				more in diameter at breast height (DBH), regardless of height.
7				neight.
8				Sapling/Shrub – Woody plants, excluding vines, less
40				than 3 in. DBH and greater than or equal to 3.28 ft (1 m) tall.
10	-			
11	95%			Herb – All herbaceous (non-woody) plants, regardless of size, and woody plants less than 3.28 ft tall.
50% of total cover: 48		= Total Cov total cover:		of size, and woody plants less than 3.20 it tall.
Woody Vine Stratum (Plot size: 30 ft r)	20 /0 01	total cover.		Woody vine – All woody vines greater than 3.28 ft in
1. Vitis vulpina	5	~	FAC	height.
•				
2	_	-		
3				
4				Hydrophytic
5	5%			Vegetation Present? Yes ✓ No
F00/ -51-1-1 2		= Total Cov		11030Ht: 163 NO
50% of total cover: 3		total cover:	<u>'</u>	
Remarks: (Include photo numbers here or on a separate	sneet.)			

Hydrophytic vegetation indicator was met.

Sampling Point: TP-9

SOIL

Profile Desc	ription: (Describe	to the dept	h needed to docum	ent the i	ndicator	or confirm	the absence	of indicators	s.)	
Depth	Matrix		Redox	Features	3					
(inches)	Color (moist)	%	Color (moist)	%	Type ¹	Loc ²	Texture		Remarks	
0 - 10	10YR 2/2	100					Mucky Loam/Clay	Mucky (s	apric) orgai	nic soils.
	-				-			-		
-										
-	-							· ·		-
-										
1		 .					2			
		letion, RM=	Reduced Matrix, MS	=Masked	Sand Gra	ains.	² Location: P			0 - 11 - 3
Hydric Soil I									blematic Hyd	
<u>✓</u> Histosol	• •		Dark Surface		(00) (5)	u B • • • =			10) (MLRA 14 7	')
	pipedon (A2)		Polyvalue Bel				148) C	oast Prairie F		
Black His			Thin Dark Su			47, 148)	Б	(MLRA 147,		40)
	n Sulfide (A4)		Loamy Gleye		F2)		P		dplain Soils (F	19)
	l Layers (A5) ck (A10) (LRR N)		Depleted Mat Redox Dark S		·6)		V	(MLRA 136,	, 1 47) Dark Surface (1	TE12)
	Below Dark Surfac	e (A11)	Depleted Dark	•	,			ther (Explain		11 12)
	rk Surface (A12)	0 (/ (/ / /	Redox Depre		. ,		~	aror (Explain	iii rtomanto)	
	lucky Mineral (S1) (I	LRR N,	Iron-Mangane			LRR N.				
	\ 147, 148)	,	MLRA 136		()(,				
	leyed Matrix (S4)		Umbric Surfac	e (F13) (MLRA 13	6, 122)	³ Ind	icators of hyd	Irophytic veget	ation and
	edox (S5)		Piedmont Flo	odplain S	oils (F19)	(MLRA 14	8) we	tland hydrolo	gy must be pre	esent,
	Matrix (S6)		Red Parent M	aterial (F	21) (MLR	A 127, 147	7) un	less disturbed	d or problemat	c.
Restrictive L	ayer (if observed):									
Type: Ro	ck									
Depth (inc	ches): 10						Hydric Soil	Present?	Yes 🖊	No
Remarks:							1			
	ydric soil ind	licator v	vas met.							
	,									

Project/Site: SR 0001 Section RC3 Improvement Project City/C	County: Langhorne/Bucks Co. Sampling Date: 2021-05-04
Applicant/Owner: PennDOT	State: Pennsylvania Sampling Point: TP-10
One in Naire Oinne Barna	on, Township, Range:
Landform (hillslope, terrace, etc.): Terrace Local rel	
	Long:74.925625 Datum: WGS 84
Soil Map Unit Name: GrA- Glenville silt loam, 0 to 3 percent slop	
Are climatic / hydrologic conditions on the site typical for this time of year? Y	
Are Vegetation, Soil, or Hydrology significantly distur	bed? Are "Normal Circumstances" present? Yes No
Are Vegetation, Soil, or Hydrology naturally problems	atic? (If needed, explain any answers in Remarks.)
SUMMARY OF FINDINGS – Attach site map showing san	npling point locations, transects, important features, etc.
Hydrophytic Vegetation Present? Hydric Soil Present? Wetland Hydrology Present? Remarks: Yes Yes No V No V Remarks:	Is the Sampled Area within a Wetland? Yes No
Forested terrace located in central portion of the between WET-3, WUS-5, and WUS-4. Upland HYDROLOGY	-
Wetland Hydrology Indicators:	Secondary Indicators (minimum of two required)
Primary Indicators (minimum of one is required; check all that apply)	Surface Soil Cracks (B6)
Surface Water (A1) True Aquatic Plants (
High Water Table (A2) Hydrogen Sulfide Od	
Saturation (A3) Oxidized Rhizospher	es on Living Roots (C3) Moss Trim Lines (B16)
Water Marks (B1) Presence of Reduced	d Iron (C4) Dry-Season Water Table (C2)
Sediment Deposits (B2) Recent Iron Reduction	on in Tilled Soils (C6) Crayfish Burrows (C8)
Drift Deposits (B3) Thin Muck Surface (0	
Algal Mat or Crust (B4) Other (Explain in Rer	
Iron Deposits (B5)	Geomorphic Position (D2)
Inundation Visible on Aerial Imagery (B7)	Shallow Aquitard (D3)
Water-Stained Leaves (B9) Aquatic Fauna (B13)	Microtopographic Relief (D4) FAC-Neutral Test (D5)
Field Observations:	TAC-Neutral Test (D3)
Surface Water Present? Yes No Depth (inches):	
Water Table Present? Yes No Peptin (inches):	
Saturation Present? Yes No Depth (inches):	
(includes capillary fringe) Describe Recorded Data (stream gauge, monitoring well, aerial photos, pre Google Earth 2021, Web Soil Survey of Bucks Cou Remarks: No wetland hydrology indicators were met.	evious inspections), if available:

			- 40
Sampli	ina Po	int· I	P-10

	Absolute	Dominant	Indicator	Dominance Test worksheet:
Tree Stratum (Plot size: 30 ft r		Species?		Number of Dominant Species
1 Acer rubrum	25	V	FAC	That Are OBL, FACW, or FAC: 4 (A)
2. Liriodendron tulipifera	15		FACU	matrice obe, friow, of frio.
3. Fagus grandifolia	10		FACU	Total Number of Dominant Species Across All Strata: 6 (B)
**		· —	17100	Species Across All Strata: 6 (B)
				Percent of Dominant Species
5				That Are OBL, FACW, or FAC: 67 (A/B)
6	_			
7				Prevalence Index worksheet:
	50%	= Total Cov	er	Total % Cover of: Multiply by:
50% of total cover: 25				OBL species 35 x 1 = 35
Sapling/Shrub Stratum (Plot size: 15 ft r)				FACW species $0 x 2 = 0$
1 Lindera benzoin	5	/	FAC	FAC species 55 x 3 = 165
'' <u></u>		·	1710	FACU species 40
2				· -
3				
4				Column Totals: 130 (A) 360 (B)
5				Decompose to decompose 2.8
6				Prevalence Index = B/A = 2.8
				Hydrophytic Vegetation Indicators:
7				1 - Rapid Test for Hydrophytic Vegetation
8	-			✓ 2 - Dominance Test is >50%
9				✓ 3 - Prevalence Index is ≤3.0 ¹
	5%	= Total Cov	er	4 - Morphological Adaptations ¹ (Provide supporting
50% of total cover: 3	20% of	total cover:	1	
Herb Stratum (Plot size: 5 ft r)				data in Remarks or on a separate sheet)
1. Symplocarpus foetidus	35	✓	OBL	Problematic Hydrophytic Vegetation ¹ (Explain)
2. Microstegium vimineum	15		FAC	
3. Lindera benzoin	10	·	FAC	¹ Indicators of hydric soil and wetland hydrology must
	10		FACU	be present, unless disturbed or problematic.
4. Rosa multiflora				Definitions of Four Vegetation Strata:
5. Parthenocissus quinquefolia	5		FACU	
6				Tree – Woody plants, excluding vines, 3 in. (7.6 cm) or more in diameter at breast height (DBH), regardless of
7				height.
8.				
0				Sapling/Shrub – Woody plants, excluding vines, less
9				than 3 in. DBH and greater than or equal to 3.28 ft (1
10		·		m) tall.
11				Herb – All herbaceous (non-woody) plants, regardless
	75%	= Total Cov	er	of size, and woody plants less than 3.28 ft tall.
50% of total cover: 38	20% of	total cover:	15	Woody vine – All woody vines greater than 3.28 ft in
Woody Vine Stratum (Plot size: 30 ft r)				height.
1				To sgrad
2				
3				
4	-			Hydrophytic
5				Vegetation
		= Total Cov	er	Present? Yes V No
50% of total cover:	20% of	total cover:		
Remarks: (Include photo numbers here or on a separate				1
` '	,			
Hydrophytic vegetation indicator wa	ıs met.			

US Army Corps of Engineers

Sampling Point: TP-10

Type: C=Concentration, D=Depletion, RM=Reduced Matrix, MS=Masked Sand Grains. Total Concentration, D=Depleted Indicators: Indicators for Problematic Hydric So: Indicators for Hydrophytic Vegetation wetland Hydrology must be present, unless disturbed or problematic. Indicators for Hydrophytic Vegetation wetland Hydrology must be present, unless disturbed or problematic. Indicators for Problematic Hydrology must be present, unless disturbed or problematic. Indicators for Hydrophytic Vegetation wetland Hydrology must be present, unless disturbed or problematic. Indicators for Hydrophytic Vegetation wetland Hydrology must be present, unless disturbed or problematic. Indicators for Hydrophytic Vegetation wetland Hydrology must be present, unless disturbed or problematic. Indicators for Hydrophytic Vegetation wetland Hydrology must be present, unless disturbed or problematic. Indicators for Hydrophytic Vegetation wetland Hydrology must be prese	0 - 6 10YR 2/2 100	O - 6	Depth	Matrix	<u></u> %	Redox Features Color (moist) % Type ¹ Loc ²	Toydera	Domestic
Concentration Dependent	Silt Loam	Silt Loam		Color (moist)		Color (moist) % Type ¹ Loc ²	<u>Texture</u>	Remarks
Type: C=Concentration, D=Depletion, RM=Reduced Matrix, MS=Masked Sand Grains.	Type: C=Concentration, D=Depletion, RM=Reduced Matrix, MS=Masked Sand Grains.	Type: C=Concentration, D=Depletion, RM=Reduced Matrix, MS=Masked Sand Grains.		-				
Hydric Soil Indicators: Histosol (A1) Histic Epipedon (A2) Black Histic (A3) Hydrogen Sulfide (A4) Stratified Layers (A5) Depleted Matrix (F3) Depleted Dark Surface (F7) Ered Muck (A10) (LRR N) Sandy Mucky Mineral (S1) (LRR N) Sandy Gleyed Matrix (S4) Sandy Gleyed Matrix (S4) Sandy Redox (S5) Sandy Redox (S5) Sandy Redox (S5) Stripped Matrix (S6) Stripped Matrix (S6) Setrictive Layer (if observed): Type: Rock, roots Depth (inches): > 10 Dark Surface (S7) Dark Surface (S8) (MLRA 147, 148) Loany Gleyed Matrix (F2) Depleted Selow Surface (A10) Loany Gleyed Matrix (F2) Depleted Matrix (F3) Murra 147, 148) Medicators for Problematic Hydric Soil 2 cm Muck (A10) (MLRA 147, 148) (MLRA 147, 148) Murra 147, 148) Murra 147, 148) Murra 136, 122) Stripped Matrix (S4) Stripped Matrix (S6) Red Parent Material (F21) (MLRA 127, 147) Restrictive Layer (if observed): Type: Rock, roots Depth (inches): > 10 Hydric Soil Present? Yes No 10 Remarks:	Hydric Soil Indicators: Histosol (A1) Histic Epipedon (A2) Black Histic (A3) Hydrogen Sulfide (A4) Stratified Layers (A5) Depleted Matrix (F3) Depleted Below Dark Surface (A11) Thick Dark Surface (A12) Sandy Mucky Mineral (S1) (LRR N, MLRA 147, 148) Sandy Gleyed Matrix (S4) Sandy Gleyed Matrix (S4) Sandy Redox (S5) Sandy Redox (S5) Stripped Matrix (S6) Setrictive Layer (if observed): Type: Rock, roots Depth (inches): > 10 Dark Surface (S7) Dark Surface (S8) (MLRA 147, 148) Loamy Gleyed Surface (S8) (MLRA 147, 148) Loamy Gleyed Matrix (F2) Depleted Matrix (F2) Depleted Matrix (F3) MLRA 147, 148) MERA 147, 148) MIRA 147, 148) MIRA 147, 148) Sandy Mucky Mineral (S1) (LRR N, MLRA 136) Sandy Redox (S5) Piedmont Floodplain Soils (F19) (MLRA 127, 147) Redox Depressions (F8) Umbric Surface (F13) (MLRA 136, 122) Piedmont Floodplain Soils (F19) (MLRA 148) Red Parent Material (F21) (MLRA 127, 147) Restrictive Layer (if observed): Type: Rock, roots Depth (inches): > 10 Hydric Soil Present? Yes No	Indicators for Problematic Hydric Sci	6 - 10	10YR 3/3	100		Silt Loam	
Histosol (A1)	Micro Soil Indicators: Indicators for Problematic Hydric Soils	Surface Soil Indicators:	-					
Histosol (A1)	ydric Soil Indicators: Histosol (A1)	ydric Soil Indicators: Histosol (A1) Histic Epipedon (A2) Black Histic (A3) Hydrogen Sulfide (A4) Stratified Layers (A5) Depleted Below Dark Surface (A11) Thick Dark Surface (A11) Sandy Mucky Mineral (S1) (LRR N, MLRA 147, 148) Sandy Medox (S5) Sandy Redox (S5) Stripped Matrix (S6) Polyvalue Below Surface (S8) (MLRA 147, 148) Loamy Gleyed Matrix (F2) Depleted Matrix (F2) Depleted Matrix (F3) Redox Dark Surface (F6) Depleted Dark Surface (F7) Lorn-Manganese Masses (F12) (LRR N, MLRA 136, 122) Sandy Redox (S5) Stripped Matrix (S6) Bed Parent Material (F21) (MLRA 127, 147) Piedmont Floodplain Soils (F19) (MLRA 136, 147) Very Shallow Dark Surface (TF12) Other (Explain in Remarks) **Indicators of hydrophytic vegetation wetland hydrology must be present, unless disturbed or problematic. ### Problematic Hydric Soil Present? Yes No_ ### Problematic Hydric Soil Present? Yes No_ ### Problematic Hydric Soil	-					
ydric Soil Indicators: Histosol (A1) Dark Surface (S7) Polyvalue Below Surface (S8) (MLRA 147, 148) Black Histic (A3) Hydrogen Sulfide (A4) Stratified Layers (A5) Depleted Matrix (F3) Depleted Dark Surface (F1) Sandy Mucky Mineral (S1) (LRR N, MLRA 147, 148) Sandy Mucky Mineral (S1) (LRR N, MLRA 147, 148) Sandy Redox (S5) Sandy Redox (S5) Sandy Redox (S5) Sandy Redox (S5) Setricitive Layer (if observed): Type: Rock, roots Depth (inches): > 10 Dark Surface (S7) Dark Surface (S8) (MLRA 147, 148) Loany Gleyed Matrix (F2) Depleted Matrix (F2) Depleted Matrix (F3) Mura 147, 148) Depleted Dark Surface (F6) Depleted Dark Surface (F7) Redox Depressions (F8) Iron-Manganese Masses (F12) (LRR N, MLRA 136, 122) Sandy Redox (S5) Piedmont Floodplain Soils (F19) (MLRA 148) Red Parent Material (F21) (MLRA 148) Wetland hydrology must be present, unless disturbed or problematic.	ydric Soil Indicators: Histosol (A1)	ydric Soil Indicators: Histosol (A1) Histic Epipedon (A2) Black Histic (A3) Hydrogen Sulfide (A4) Stratified Layers (A5) Depleted Below Dark Surface (A11) Thick Dark Surface (A11) Sandy Mucky Mineral (S1) (LRR N, MLRA 147, 148) Sandy Medox (S5) Sandy Redox (S5) Stripped Matrix (S6) Red Parent Material (F21) (MLRA 127, 147) Red Parent? Yes No MIRA 136: MIRA 136: No		_				
ydric Soil Indicators: Histosol (A1) Dark Surface (S7) Polyvalue Below Surface (S8) (MLRA 147, 148) Black Histic (A3) Hydrogen Sulfide (A4) Stratified Layers (A5) Depleted Matrix (F3) Depleted Dark Surface (F1) Sandy Mucky Mineral (S1) (LRR N, MLRA 147, 148) Sandy Mucky Mineral (S1) (LRR N, MLRA 147, 148) Sandy Redox (S5) Sandy Redox (S5) Sandy Redox (S5) Sandy Redox (S5) Setricitive Layer (if observed): Type: Rock, roots Depth (inches): > 10 Dark Surface (S7) Dark Surface (S8) (MLRA 147, 148) Loany Gleyed Matrix (F2) Depleted Matrix (F2) Depleted Matrix (F3) Mura 147, 148) Depleted Dark Surface (F6) Depleted Dark Surface (F7) Redox Depressions (F8) Iron-Manganese Masses (F12) (LRR N, MLRA 136, 122) Sandy Redox (S5) Piedmont Floodplain Soils (F19) (MLRA 148) Red Parent Material (F21) (MLRA 148) Wetland hydrology must be present, unless disturbed or problematic.	ydric Soil Indicators: Histosol (A1)	ydric Soil Indicators: Histosol (A1) Histic Epipedon (A2) Black Histic (A3) Hydrogen Sulfide (A4) Stratified Layers (A5) Depleted Below Dark Surface (A11) Thick Dark Surface (A11) Sandy Mucky Mineral (S1) (LRR N, MLRA 147, 148) Sandy Medox (S5) Sandy Redox (S5) Stripped Matrix (S6) Red Parent Material (F21) (MLRA 127, 147) Red Parent? Yes No MIRA 136: MIRA 136: No						
Histosol (A1)	ydric Soil Indicators: Histosol (A1)	ydric Soil Indicators: Histosol (A1) Histic Epipedon (A2) Black Histic (A3) Hydrogen Sulfide (A4) Stratified Layers (A5) Depleted Below Dark Surface (A11) Thick Dark Surface (A11) Sandy Mucky Mineral (S1) (LRR N, MLRA 147, 148) Sandy Medox (S5) Sandy Redox (S5) Stripped Matrix (S6) Polyvalue Below Surface (S8) (MLRA 147, 148) Loamy Gleyed Matrix (F2) Depleted Matrix (F2) Depleted Matrix (F3) Redox Dark Surface (F6) Depleted Dark Surface (F7) Lorn-Manganese Masses (F12) (LRR N, MLRA 136, 122) Sandy Redox (S5) Stripped Matrix (S6) Bed Parent Material (F21) (MLRA 127, 147) Piedmont Floodplain Soils (F19) (MLRA 136, 147) Very Shallow Dark Surface (TF12) Other (Explain in Remarks) **Indicators of hydrophytic vegetation wetland hydrology must be present, unless disturbed or problematic. ### Problematic Hydric Soil Present? Yes No_ ### Problematic Hydric Soil Present? Yes No_ ### Problematic Hydric Soil						
Histosol (A1)	ydric Soil Indicators: Histosol (A1) Histic Epipedon (A2) Black Histic (A3) Hydrogen Sulfide (A4) Stratified Layers (A5) Depleted Matrix (F3) Depleted Below Dark Surface (A11) Depleted Below Dark Surface (A11) Sandy Mucky Mineral (S1) (LRR N, MLRA 147, 148) Sandy Gleyed Matrix (S4) Sandy Redox (S5) Sandy Redox (S5) Sandy Redox (S5) Sandy Redox (S5) Stripped Matrix (S6) Eestrictive Layer (if observed): Type: Rock, roots Depth (inches): > 10 Polyvalue Below Surface (S7) Polyvalue Below Surface (S8) (MLRA 147, 148) Loamy Gleyed Surface (S9) (MLRA 147, 148) Loamy Gleyed Matrix (F2) Depleted Matrix (F2) Depleted Matrix (F3) MLRA 147, 148) MLRA 136, Sandy Mucky Mineral (S1) (LRR N, MLRA 136, 122) Sandy Redox (S5) Piedmont Floodplain Soils (F19) (MLRA 127, 147) Betrictive Layer (if observed): Type: Rock, roots Depth (inches): > 10 Hydric Soil Present? Yes No	ydric Soil Indicators: Histosol (A1) Histic Epipedon (A2) Black Histic (A3) Hydrogen Sulfide (A4) Stratified Layers (A5) Depleted Below Dark Surface (A11) Thick Dark Surface (A12) Sandy Mucky Mineral (S1) (LRR N, MLRA 147, 148) Sandy Medox (S5) Sandy Redox (S5) Stripped Matrix (S6) Eestrictive Layer (if observed): Type: Rock, roots Depth (inches): > 10 Dark Surface (S7) Dark Surface (S8) (MLRA 147, 148) Loany Gleyed Matrix (F2) Depleted Matrix (F2) Depleted Matrix (F3) (MLRA 147, 148) (MLRA 147, 148) (MLRA 136, 147) Piedmont Floodplain Soils (F19) (MLRA 136, 147) Very Shallow Dark Surface (TF12) Other (Explain in Remarks) Type: Rock, roots Depth (inches): > 10 Hydric Soil Present? Yes No Mydra 147, 148) Mydra 147, 148) Mydra 147, 148) Mydra 147, 148) Mydric Soil Present? Yes No Mydra 147, 148) Mydric Soil Present? Yes No Mydra 147, 148	-					
Histosol (A1)	ydric Soil Indicators: Histosol (A1) Histic Epipedon (A2) Black Histic (A3) Hydrogen Sulfide (A4) Stratified Layers (A5) Depleted Matrix (F3) Depleted Below Dark Surface (A11) Depleted Below Dark Surface (A11) Sandy Mucky Mineral (S1) (LRR N, MLRA 147, 148) Sandy Gleyed Matrix (S4) Sandy Redox (S5) Sandy Redox (S5) Sandy Redox (S5) Sandy Redox (S5) Stripped Matrix (S6) Eestrictive Layer (if observed): Type: Rock, roots Depth (inches): > 10 Polyvalue Below Surface (S7) Polyvalue Below Surface (S8) (MLRA 147, 148) Loamy Gleyed Surface (S9) (MLRA 147, 148) Loamy Gleyed Matrix (F2) Depleted Matrix (F2) Depleted Matrix (F3) MLRA 147, 148) MLRA 136, Sandy Mucky Mineral (S1) (LRR N, MLRA 136, 122) Sandy Redox (S5) Piedmont Floodplain Soils (F19) (MLRA 127, 147) Betrictive Layer (if observed): Type: Rock, roots Depth (inches): > 10 Hydric Soil Present? Yes No	ydric Soil Indicators: Histosol (A1) Histic Epipedon (A2) Black Histic (A3) Hydrogen Sulfide (A4) Stratified Layers (A5) Depleted Below Dark Surface (A11) Thick Dark Surface (A12) Sandy Mucky Mineral (S1) (LRR N, MLRA 147, 148) Sandy Medox (S5) Sandy Redox (S5) Stripped Matrix (S6) Eestrictive Layer (if observed): Type: Rock, roots Depth (inches): > 10 Dark Surface (S7) Dark Surface (S8) (MLRA 147, 148) Loany Gleyed Matrix (F2) Depleted Matrix (F2) Depleted Matrix (F3) (MLRA 147, 148) (MLRA 147, 148) (MLRA 136, 147) Piedmont Floodplain Soils (F19) (MLRA 136, 147) Very Shallow Dark Surface (TF12) Other (Explain in Remarks) Type: Rock, roots Depth (inches): > 10 Hydric Soil Present? Yes No Mydra 147, 148) Mydra 147, 148) Mydra 147, 148) Mydra 147, 148) Mydric Soil Present? Yes No Mydra 147, 148) Mydric Soil Present? Yes No Mydra 147, 148	-					
Histosol (A1)	ydric Soil Indicators: Histosol (A1)	ydric Soil Indicators: Histosol (A1) Histic Epipedon (A2) Black Histic (A3) Hydrogen Sulfide (A4) Stratified Layers (A5) Depleted Below Dark Surface (A11) Thick Dark Surface (A11) Sandy Mucky Mineral (S1) (LRR N, MLRA 147, 148) Sandy Medox (S5) Sandy Redox (S5) Stripped Matrix (S6) Polyvalue Below Surface (S8) (MLRA 147, 148) Loamy Gleyed Matrix (F2) Depleted Matrix (F2) Depleted Matrix (F3) Redox Dark Surface (F6) Depleted Dark Surface (F7) Lorn-Manganese Masses (F12) (LRR N, MLRA 136, 122) Sandy Redox (S5) Stripped Matrix (S6) Bed Parent Material (F21) (MLRA 127, 147) Piedmont Floodplain Soils (F19) (MLRA 136, 147) Very Shallow Dark Surface (TF12) Other (Explain in Remarks) **Indicators of hydrophytic vegetation wetland hydrology must be present, unless disturbed or problematic. ### Problematic Hydric Soil Present? Yes No_ ### Problematic Hydric Soil Present? Yes No_ ### Problematic Hydric Soil	_					
ydric Soil Indicators: Histosol (A1) Dark Surface (S7) Polyvalue Below Surface (S8) (MLRA 147, 148) Black Histic (A3) Hydrogen Sulfide (A4) Stratified Layers (A5) Depleted Matrix (F3) Depleted Dark Surface (F1) Sandy Mucky Mineral (S1) (LRR N, MLRA 147, 148) Sandy Mucky Mineral (S1) (LRR N, MLRA 147, 148) Sandy Redox (S5) Sandy Redox (S5) Sandy Redox (S5) Sandy Redox (S5) Setricitive Layer (if observed): Type: Rock, roots Depth (inches): > 10 Dark Surface (S7) Dark Surface (S8) (MLRA 147, 148) Loany Gleyed Matrix (F2) Depleted Matrix (F2) Depleted Matrix (F3) Mura 147, 148) Depleted Dark Surface (F6) Depleted Dark Surface (F7) Redox Depressions (F8) Iron-Manganese Masses (F12) (LRR N, MLRA 136, 122) Sandy Redox (S5) Piedmont Floodplain Soils (F19) (MLRA 148) Red Parent Material (F21) (MLRA 148) Wetland hydrology must be present, unless disturbed or problematic.	ydric Soil Indicators: Histosol (A1)	ydric Soil Indicators: Histosol (A1) Histic Epipedon (A2) Black Histic (A3) Hydrogen Sulfide (A4) Stratified Layers (A5) Depleted Below Dark Surface (A11) Thick Dark Surface (A11) Sandy Mucky Mineral (S1) (LRR N, MLRA 147, 148) Sandy Medox (S5) Sandy Redox (S5) Stripped Matrix (S6) Red Parent Material (F21) (MLRA 127, 147) Red Parent? Yes No MIRA 136: MIRA 136: No						
ydric Soil Indicators: Histosol (A1)	ydric Soil Indicators: Histosol (A1) Histic Epipedon (A2) Black Histic (A3) Hydrogen Sulfide (A4) Stratified Layers (A5) Depleted Matrix (F3) Depleted Below Dark Surface (A11) Depleted Below Dark Surface (A12) Sandy Mucky Mineral (S1) (LRR N) Sandy Gleyed Matrix (S4) Sandy Redox (S5) Sandy Redox (S5) Sandy Redox (S5) Stripped Matrix (S6) Sandy Redox (S5) Stripped Matrix (S6) Sandy Redox (S5) Stripped Matrix (S6) Sandy Redox (S5) Depleted Matrix (S6) Sandy Redox (S5) Depleted Dark Surface (F13) (MLRA 136, 122) Piedmont Floodplain Soils (F19) MLRA 136, 122) All Diagnostic Hydric Soil Present? Yes No Problematic Hydric Soils (Problematic Hydric Soil Present? Hydric Soil Present? Yes No Problematic Hydric Hydric Soils (Problematic Hydric Hydric Soil Present? Hydric Soil Present? Yes No Problematic Hydric Hydric Hydric Soil Present? Hydric Soil Present? Yes No Problematic Hydric Hydric Hydric Soil Present?	ydric Soil Indicators: Histosol (A1)						
Histosol (A1)	Histosol (A1)	Histosol (A1)			epletion, RM=F	Reduced Matrix, MS=Masked Sand Grains.		
Histic Epipedon (A2)	Histic Epipedon (A2)	Histic Epipedon (A2)	dric Soil	Indicators:			Indica	ators for Problematic Hydric Soils
Black Histic (A3)	Black Histic (A3)	Black Histic (A3)						
Hydrogen Sulfide (A4) Stratified Layers (A5) Depleted Matrix (F3) MLRA 136, 147) Perpleted Below Dark Surface (A11) Depleted Below Dark Surface (A12) Sandy Mucky Mineral (S1) (LRR N, MLRA 136) Sandy Gleyed Matrix (S4) Sandy Redox (S5) Sandy Redox (S5) Stripped Matrix (S6) Stripped Matrix (S6) Depth (inches): Deptheted Matrix (F2) Depleted Matrix (F2) MLRA 136, 147) Wery Shallow Dark Surface (TF12) Other (Explain in Remarks) Very Shallow Dark Surface (TF12) Other (Explain in Remarks) MLRA 136, 121 Iron-Manganese Masses (F12) (LRR N, MLRA 136, 122) Shallow Depth (inches): Piedmont Floodplain Soils (F19) (MLRA 148) Wetland hydrology must be present, unless disturbed or problematic. Hydric Soil Present? Yes Noemarks:	Hydrogen Sulfide (A4) Stratified Layers (A5) Depleted Matrix (F3) Depleted Below Dark Surface (A11) Thick Dark Surface (A12) Sandy Mucky Mineral (S1) (LRR N, MLRA 147, 148) Sandy Gleyed Matrix (S4) Sandy Redox (S5) Stripped Matrix (S6) Stripped Matrix (S6) Depleted Dark Surface (F12) Liron-Manganese Masses (F12) (LRR N, MLRA 136, 122) Stripped Matrix (S6) Stripped Matrix (S6) Depth (inches): Depth (inches): Loamy Gleyed Matrix (F2) Depleted Matrix (F2) Depleted Matrix (F3) Redox Dark Surface (F6) Depleted Dark Surface (F7) Depleted Dark Surface (F1) Depleted Dark Surface (F1) Depleted Matrix (F2) Well R N, MLRA 136, Umbric Surface (F12) (MLRA 136, 122) Brick Type: Rock, roots Depth (inches): Depth (inche	Hydrogen Sulfide (A4) Stratified Layers (A5) Depleted Matrix (F3) MLRA 136, 147) Permarks: Loamy Gleyed Matrix (F2) Depleted Matrix (F3) MLRA 136, 147) Permarks: Piedmont Floodplain Soils (F19) MLRA 136, 147) Permarks: Piedmont Floodplain Soils (F19) MLRA 136, 147) Permarks: Piedmont Floodplain Soils (F19) MLRA 136, 147) Permarks Piedmont Floodplain Soils (F19) MLRA 136, 147) Very Shallow Dark Surface (TF12) Other (Explain in Remarks) Pother (Explain in Remarks) No MLRA 147, 148) Iron-Manganese Masses (F12) (LRR N, MLRA 136, 122) Piedmont Floodplain Soils (F19) MLRA 136, 122) Piedmont Floodplain Soils (F19) Piedmont Floodplain Soils					148) C	
							_	• •
		2 cm Muck (A10) (LRR N)					P	
							V	
		Thick Dark Surface (A12) Redox Depressions (F8) Iron-Manganese Masses (F12) (LRR N, MLRA 147, 148) MLRA 136) Sandy Gleyed Matrix (S4) Umbric Surface (F13) (MLRA 136, 122) 3Indicators of hydrophytic vegetation Sandy Redox (S5) Piedmont Floodplain Soils (F19) (MLRA 148) wetland hydrology must be present, Red Parent Material (F21) (MLRA 127, 147) unless disturbed or problematic. **Estrictive Layer (if observed):			ace (A11)			
					ice (ATT)		0	ottler (Explain in Nemarks)
MLRA 147, 148) _ Sandy Gleyed Matrix (S4) _ Sandy Redox (S5) _ Stripped Matrix (S6) Stripped Matrix (S6) _ Type: Rock, roots Depth (inches): > 10 Hydric Soil Present? Yes No	MLRA 147, 148) _ Sandy Gleyed Matrix (S4) _ Sandy Redox (S5) _ Stripped Matrix (S6) Stripped Matrix (S6) _ Red Parent Material (F21) (MLRA 127, 147) _ Strictive Layer (if observed):	MLRA 147, 148) Sandy Gleyed Matrix (S4) Sandy Redox (S5) Stripped Matrix (S6) Hydric Soil Present? Yes No emarks:			(LRR N.			
Sandy Gleyed Matrix (S4) Umbric Surface (F13) (MLRA 136, 122) Sandy Redox (S5)	Sandy Gleyed Matrix (S4) Umbric Surface (F13) (MLRA 136, 122) Sandy Redox (S5)	Sandy Gleyed Matrix (S4) Umbric Surface (F13) (MLRA 136, 122) Sandy Redox (S5)	-		(
Sandy Redox (S5) Piedmont Floodplain Soils (F19) (MLRA 148) wetland hydrology must be present, Stripped Matrix (S6) Red Parent Material (F21) (MLRA 127, 147) unless disturbed or problematic. estrictive Layer (if observed): Type: Rock, roots Depth (inches): > 10	Sandy Redox (S5) Piedmont Floodplain Soils (F19) (MLRA 148) wetland hydrology must be present, Stripped Matrix (S6) Red Parent Material (F21) (MLRA 127, 147) unless disturbed or problematic. estrictive Layer (if observed): Type: Rock, roots Depth (inches): > 10 Hydric Soil Present? Yes No emarks:	Sandy Redox (S5) Piedmont Floodplain Soils (F19) (MLRA 148) wetland hydrology must be present, Stripped Matrix (S6) Red Parent Material (F21) (MLRA 127, 147) unless disturbed or problematic. estrictive Layer (if observed): Type: Rock, roots Depth (inches): > 10 Hydric Soil Present? Yes No emarks:				•	³ Ind	licators of hydrophytic vegetation and
estrictive Layer (if observed): Type: Rock, roots Depth (inches): > 10 Hydric Soil Present? Yes Noemarks:	estrictive Layer (if observed): Type: Rock, roots Depth (inches): > 10 Hydric Soil Present? Yes No	estrictive Layer (if observed): Type: Rock, roots Depth (inches): > 10 Hydric Soil Present? Yes No emarks:						
Type: Rock, roots Depth (inches): > 10 emarks: Hydric Soil Present? Yes No	Type: Rock, roots Depth (inches): > 10 Hydric Soil Present? Yes No	Type: Rock, roots Depth (inches): > 10 Hydric Soil Present? Yes No _	_ Stripped	Matrix (S6)		Red Parent Material (F21) (MLRA 127, 147	7) un	less disturbed or problematic.
Depth (inches): > 10 emarks: Hydric Soil Present? Yes No	Depth (inches): > 10 Hydric Soil Present? Yes No emarks:	Depth (inches): > 10 Hydric Soil Present? Yes No _	estrictive	Layer (if observed	d):			
emarks:	emarks:	emarks:	Type: Ro	ck, roots		<u></u>		
emarks:	emarks:	emarks:	Depth (in	ches): > 10			Hydric Soil	Present? Yes No
			emarks:	·				
				o nyano sol	ii iiididate	were met.		

Project/Site: SR 0001 Sect	ion RC3 Im	oroveme	nt Project City/C	ounty: Langhorne	e/Bucks Co.	Sampling Date: 2021-05-0	04
Applicant/Owner: PennDOT						nia Sampling Point: TP-11	
Investigator(s):Craig Nein, G	inny Boone				e:		
Landform (hillslope, terrace, et							
Subregion (LRR or MLRA): S							
Soil Map Unit Name: UkB- U	rhan land-(Lal `hester c	complex 0 to 8 r	LONG	74.024000	N/A	
							—
Are climatic / hydrologic condit							
Are Vegetation, Soil	, or Hydro	logy	_ significantly distur	bed? Are "No	rmal Circumstances" p	oresent? Yes No	
Are Vegetation, Soil	, or Hydro	logy	_ naturally problema	atic? (If need	ed, explain any answe	rs in Remarks.)	
SUMMARY OF FINDING	GS – Attach	site ma	p showing sam	pling point loc	ations, transects	, important features, e	tc.
Hydrophytic Vegetation Prese Hydric Soil Present? Wetland Hydrology Present? Remarks: PEM wetland (WET-B)	Ye Ye	es ves ves ves ves ves ves ves ves ves v	No No No R 0001, and we	Is the Sampled Ar within a Wetland? st of West Inte	Yes <u>/</u>		
culvert/pipe beneath \ Open ended wetland b		•					
HYDROLOGY							
Wetland Hydrology Indicate	ors:				Secondary Indica	ators (minimum of two required	d)
Primary Indicators (minimum Surface Water (A1) High Water Table (A2) Saturation (A3) Water Marks (B1) Sediment Deposits (B2) Drift Deposits (B3) Algal Mat or Crust (B4) Iron Deposits (B5) Inundation Visible on Ael Water-Stained Leaves (E Aquatic Fauna (B13)	ial Imagery (B	T F F T	all that apply) True Aquatic Plants (I Hydrogen Sulfide Odd Dxidized Rhizosphere Presence of Reduced Recent Iron Reductio Thin Muck Surface (C Other (Explain in Ren	or (C1) es on Living Roots (0 I Iron (C4) n in Tilled Soils (C6)	Drainage Pat C3) Moss Trim Li Dry-Season V Crayfish Burr Saturation Vi	getated Concave Surface (B8 tterns (B10) ines (B16) Water Table (C2) rows (C8) isible on Aerial Imagery (C9) tressed Plants (D1) Position (D2) itard (D3) aphic Relief (D4))
Field Observations:			0.1				
Surface Water Present?	Yes	No	Depth (inches): 0-1 Depth (inches): 9				
Water Table Present?	Yes	NO	Depth (inches): 0		nd Hedrelene Brees	V Na	
Saturation Present? Yes No Depth (inches): 0 Wetland Hydrology Present? Yes No Solution Present?							
Multiple wetland h	ydrology	indicat	tors were me	t.			
Hydrology supplie	d by seas	onally	high water ta	able, storm w	vater and surfa	ace runoff.	
Episaturation obse	rved.						

Samp	lina	Point:	TP-11
Jailio	mu	r Ollit.	

	Absolute	Dominant	Indicator	Dominance Test worksheet:
<u>Tree Stratum</u> (Plot size: 10 ft r)	% Cover	Species?	Status	Number of Dominant Species
1				That Are OBL, FACW, or FAC: 2 (A)
2				Total Number of Dominant
3	-			Species Across All Strata: 2 (B)
4				Percent of Deminant Species
5				Percent of Dominant Species That Are OBL, FACW, or FAC: 100 (A/B)
6	_			
7				Prevalence Index worksheet:
		= Total Cov	er	Total % Cover of: Multiply by:
50% of total cover:	20% of	total cover:		OBL species 10 x 1 = 10
Sapling/Shrub Stratum (Plot size: 10 ft r				FACW species <u>5</u> x 2 = <u>10</u>
1.				FAC species <u>70</u> _{x 3 = <u>210</u>}
2	<u>.</u>			FACU species 0 x 4 = 0
3				UPL species <u>0</u> x 5 = <u>0</u>
4				Column Totals: <u>85</u> (A) <u>230</u> (B)
5				5
6.				Prevalence Index = B/A = 2.7
7.	- '-			Hydrophytic Vegetation Indicators:
8	<u>.</u>			1 - Rapid Test for Hydrophytic Vegetation
9				✓ 2 - Dominance Test is >50%
<u> </u>		= Total Cov		✓ 3 - Prevalence Index is ≤3.0 ¹
50% of total cover:				4 - Morphological Adaptations ¹ (Provide supporting
Herb Stratum (Plot size: 5 ft r)				data in Remarks or on a separate sheet)
1. Ficaria verna	40	~	FAC	Problematic Hydrophytic Vegetation¹ (Explain)
2 Microstegium vimineum	30		FAC	
3 Carex Iurida	10		OBL	¹ Indicators of hydric soil and wetland hydrology must
4 Juncus effusus	5		FACW	be present, unless disturbed or problematic.
5				Definitions of Four Vegetation Strata:
6.				Tree – Woody plants, excluding vines, 3 in. (7.6 cm) or
7				more in diameter at breast height (DBH), regardless of height.
8				
9.	- '-			Sapling/Shrub – Woody plants, excluding vines, less than 3 in. DBH and greater than or equal to 3.28 ft (1
10.				m) tall.
11.				Harb All barbassas (non usadis) planta sassadiana
	85%	= Total Cov	<u></u>	Herb – All herbaceous (non-woody) plants, regardless of size, and woody plants less than 3.28 ft tall.
50% of total cover: 43		total cover:		
Woody Vine Stratum (Plot size: 10 ft r)			_	Woody vine – All woody vines greater than 3.28 ft in height.
1				neight.
2				
3				
4			-	Hydrophytic
5				Vegetation Present? Yes ✓ No
50% of total cover:		= Total Cover:		
		iolai cover:	•	
Remarks: (Include photo numbers here or on a separate	sneet.)			

Hydrophytic vegetation indicator was met.

Plot sizes adjusted due to small size of wetland area within study area.

Profile Desc	cription: (Describe	to the de	oth needed to docu	ment the	indicator	or confirm	n the absence of	indicators.)
Depth	Matrix			x Feature	es			
(inches)	Color (moist)	<u>%</u>	Color (moist)	<u>%</u>	Type ¹	Loc ²	<u>Texture</u>	Remarks
0 - 2	10YR 2/2	100	7.570.470	15			Mucky Loam/Clay	-
2 - 10	10YR 3/2	85	7.5YR 4/6	15	<u>C</u>	<u>M</u>	Silt Loam	-
10 - 11	10YR 4/4	85	7.5YR 4/6	15	<u>C</u>	<u>M</u>	Silt Loam	
				-				
					<u> </u>			
	-							
					<u> </u>			
¹ Type: C=C	oncentration, D=De	pletion, RM	I=Reduced Matrix, M	S=Maske	d Sand Gr	ains.	² Location: PL=F	Pore Lining, M=Matrix.
Hydric Soil								rs for Problematic Hydric Soils³:
Histosol	(A1)		Dark Surface	e (S7)			2 cm	n Muck (A10) (MLRA 147)
Histic E	pipedon (A2)		Polyvalue Be	elow Surfa	ace (S8) (I	VILRA 147	, 148) Coa	st Prairie Redox (A16)
Black H	istic (A3)		Thin Dark Su	urface (SS) (MLRA	147, 148)		/ILRA 147, 148)
	en Sulfide (A4)		Loamy Gleye	ed Matrix	(F2)		Pied	lmont Floodplain Soils (F19)
	d Layers (A5)		Depleted Ma	ıtrix (F3)				/ILRA 136, 147)
	uck (A10) (LRR N)		✓ Redox Dark	•				Shallow Dark Surface (TF12)
	d Below Dark Surface	ce (A11)	Depleted Da		. ,		Othe	er (Explain in Remarks)
	ark Surface (A12)		Redox Depre					
	Mucky Mineral (S1)	(LRR N,	Iron-Mangan		ses (F12) (LRR N,		
	A 147, 148)		MLRA 13	•	/MI D A 4/	20. 400\	31	to an affection and the constation and
	Gleyed Matrix (S4)		Umbric Surfa					tors of hydrophytic vegetation and
Sandy Redox (S5) Piedmont Floodplain Soils (F19) (MLRA 14 Stripped Matrix (S6) Red Parent Material (F21) (MLRA 127, 147							nd hydrology must be present,	
	Layer (if observed)	١.	Red Parent I	viateriai (i	-21) (WILK	A 127, 14	7) unles	s disturbed or problematic.
	Layer (II Observed)).						
Type:	ah a a \.						Ukadaia Cail Da	esent? Yes 🗸 No
	ches):						Hydric Soil Pr	esent? Yes V No No No
Remarks:	lydric soil ind	dicator	was met.					

Project/Site: SR 0001 Section RC3 Improvement Project City/Co	ounty: Langhorne/Bucks Co. Sampling Date: 2021-05-04				
	State: Pennsylvania Sampling Point: TP-12				
	n, Township, Range:				
Landform (hillslope, terrace, etc.): Hillslope Local relie					
	Long: -74.924085 Datum: WGS 84				
Soil Map Unit Name: UkB- Urban land-Chester complex, 0 to 8 p					
Are climatic / hydrologic conditions on the site typical for this time of year? Yes $\frac{1}{2}$					
Are Vegetation, Soil, or Hydrology significantly disturb	ed? Are "Normal Circumstances" present? Yes No				
Are Vegetation, Soil, or Hydrology naturally problemat	ic? (If needed, explain any answers in Remarks.)				
SUMMARY OF FINDINGS – Attach site map showing samp	pling point locations, transects, important features, etc.				
Hydrophytic Vegetation Present? Yes ✔ No					
Hydria Sail Brasant2 Yes No.	Is the Sampled Area within a Wetland? Yes No ✓				
Wetland Hydrology Present? Yes No ✔	within a Wetland? Yes No				
Remarks:					
Hill slope located north and east of WET-B. Upla	and plot associated with TP-11/WET-B.				
HYDROLOGY					
Wetland Hydrology Indicators:	Secondary Indicators (minimum of two required)				
Primary Indicators (minimum of one is required; check all that apply) Surface Soil Cracks (B6)					
Surface Water (A1) True Aquatic Plants (B14) Sparsely Vegetated Concave Surface (B8					
High Water Table (A2) Hydrogen Sulfide Odor (C1) Drainage Patterns (B10) Seturation (A3) Ovidized Phizosphores on Living Roots (C3) Mess Trim Lines (R16)					
Saturation (A3) Oxidized Rhizospheres on Living Roots (C3) Moss Trim Lines (B16) Water Marks (B1) Presence of Reduced Iron (C4) Dry-Season Water Table (C2)					
Sediment Deposits (B2) Recent Iron Reduction					
Drift Deposits (B3) Thin Muck Surface (C7					
Algal Mat or Crust (B4) Other (Explain in Remains					
Iron Deposits (B5)	Geomorphic Position (D2)				
Inundation Visible on Aerial Imagery (B7)	Shallow Aquitard (D3)				
Water-Stained Leaves (B9)	Microtopographic Relief (D4)				
Aquatic Fauna (B13)	FAC-Neutral Test (D5)				
Field Observations:					
Surface Water Present? Yes No Depth (inches):					
Water Table Present? Yes No Depth (inches):					
Saturation Present? Yes No Depth (inches): (includes capillary fringe)	Wetland Hydrology Present? Yes No_ ✓				
Describe Recorded Data (stream gauge, monitoring well, aerial photos, previous inspections), if available: Google Earth 2021, Web Soil Survey of Bucks County Remarks:					
No wetland hydrology indicators were met.					

Sampling	Doint:	TP-12
Samonno	POINT	15-14

	Absolute	Dominant	Indicator	Dominance Test worksheet:
Tree Stratum (Plot size: 10 ft r	% Cover	Species?	Status	Number of Dominant Species
1	_			That Are OBL, FACW, or FAC: 2 (A)
2	-			Total Number of Dominant
3				Species Across All Strata: 3 (B)
4				Percent of Deminant Species
5				Percent of Dominant Species That Are OBL, FACW, or FAC: 67 (A/B)
6	_			
7				Prevalence Index worksheet:
		= Total Cov	er	Total % Cover of: Multiply by:
50% of total cover:	20% of	total cover:		OBL species $0 \times 1 = 0$
Sapling/Shrub Stratum (Plot size: 10 ft r				FACW species $0 \times 2 = 0$
1. Rubus phoenicolasius	5	~	FACU	FAC species 70 x 3 = 210
2				FACU species 20 x 4 = 80
3				UPL species 0 x 5 = 0
4				Column Totals: 90 (A) 290 (B)
5				5
6.				Prevalence Index = B/A = 3.2
7				Hydrophytic Vegetation Indicators:
8				1 - Rapid Test for Hydrophytic Vegetation
9.	-			✓ 2 - Dominance Test is >50%
<u> </u>	5%	= Total Cov		3 - Prevalence Index is ≤3.0¹
50% of total cover: 3				4 - Morphological Adaptations ¹ (Provide supporting
Herb Stratum (Plot size: 5 ft r)				data in Remarks or on a separate sheet)
1. Ficaria verna	40	✓	FAC	Problematic Hydrophytic Vegetation ¹ (Explain)
2. Microstegium vimineum	30		FAC	
3 Reynoutria japonica	15		FACU	¹ Indicators of hydric soil and wetland hydrology must
4	· ·			be present, unless disturbed or problematic.
5				Definitions of Four Vegetation Strata:
				Tree – Woody plants, excluding vines, 3 in. (7.6 cm) or
6 7		·		more in diameter at breast height (DBH), regardless of height.
8				neight.
9.				Sapling/Shrub – Woody plants, excluding vines, less than 3 in. DBH and greater than or equal to 3.28 ft (1
10.				m) tall.
11	· ·			
111	85%	= Total Cov		Herb – All herbaceous (non-woody) plants, regardless of size, and woody plants less than 3.28 ft tall.
50% of total cover: 43		total cover:		or orze, and woody planto loss than o.ze it tall.
Woody Vine Stratum (Plot size: 10 ft r)	20 /0 0.	total oover.		Woody vine – All woody vines greater than 3.28 ft in
				height.
1				
2				
3				
4				Hydrophytic
5				Vegetation Present? Yes ✓ No
F00/ -51-1-1 -2:		= Total Cov		100
50% of total cover:		total cover:		
Remarks: (Include photo numbers here or on a separate	sneet.)			

Hydrophytic vegetation indicator was met.

Plot sizes adjusted due to proximity to wetland and roadway.

Profile Desc	ription: (Describe	to the de	pth needed to docu	ment the	indicator	or confirm	n the absence	of indicators.)
Depth	Matrix			x Feature				
(inches)	Color (moist)	%	Color (moist)	%	Type ¹	Loc ²	Texture	Remarks
0 - 5	10YR 4/4	100			_		Silt Loam	
5 - 10	10YR 4/4	70	10YR 5/8	30	С	М	Loam	
								
	-				_			
					_			
-								
	-	-						
		-	· -		_		-	
			· ·		_			
-								
					_			
				-				
		letion, RM	1=Reduced Matrix, M	S=Maske	d Sand Gi	ains.		PL=Pore Lining, M=Matrix.
Hydric Soil	Indicators:						Indic	eators for Problematic Hydric Soils ³ :
Histosol	(A1)		Dark Surface	e (S7)			2	2 cm Muck (A10) (MLRA 147)
Histic E	oipedon (A2)		Polyvalue Be	elow Surfa	ace (S8) (I	MLRA 147	, 148) (Coast Prairie Redox (A16)
Black Hi	stic (A3)		Thin Dark S	urface (S9	9) (MLRA	147, 148)		(MLRA 147, 148)
Hydroge	en Sulfide (A4)		Loamy Gley	ed Matrix	(F2)		F	Piedmont Floodplain Soils (F19)
	d Layers (A5)		Depleted Ma					(MLRA 136, 147)
	ıck (A10) (LRR N)		Redox Dark	•	,			Very Shallow Dark Surface (TF12)
	d Below Dark Surfac	e (A11)	Depleted Da				(Other (Explain in Remarks)
	ark Surface (A12)		Redox Depr					
	Mucky Mineral (S1) (I	_RR N,	Iron-Mangar		ses (F12)	(LRR N,		
	A 147, 148)		MLRA 13	•	(BAL D.A. 4)		3,	
	Gleyed Matrix (S4)		Umbric Surfa					dicators of hydrophytic vegetation and
-	Redox (S5)		Piedmont Fl					etland hydrology must be present,
	Matrix (S6)		Red Parent	wateriai (F21) (WILF	KA 127, 14	<i>(</i>) ur	nless disturbed or problematic.
Restrictive	Layer (if observed): ocky substrate							
								.,
Depth (in	ches): 10						Hydric Soi	I Present? Yes No
Remarks:		. ,.						
N	o nyarıc soli	indica	tors were me	τ				

Project/Site: SR 0001 Section RC3 Improvement Project City/C	ounty: Langhorne/Bucks Co. Sampling Date: 2021-05-11				
Applicant/Owner: PennDOT	State: Pennsylvania Sampling Point: TP-13				
Investigator(s):Craig Nein, Ginny Boone Section					
Landform (hillslope, terrace, etc.): Floodplain Local reli					
	Long:74.925217 Datum: WGS 84				
Soil Map Unit Name: GrA- Glenville silt loam, 0 to 3 percent slop	es NWI classification: N/A				
Are climatic / hydrologic conditions on the site typical for this time of year? Y					
Are Vegetation, Soil, or Hydrology significantly disturt					
Are Vegetation, Soil, or Hydrology naturally problems					
SUMMARY OF FINDINGS – Attach site map showing sam					
Somman of Theblies - Attach site map showing sain	iping point locations, transects, important reatures, etc.				
Hydrophytic Vegetation Present? Yes No	Is the Sampled Area				
Hydric Soil Present? Yes No	within a Wetland? Yes No				
Wetland Hydrology Present? Yes No 🗸	 -				
Low-lying floodplain along right bank (looking o	downstream) of WUS-4, on south side of SR				
0001.					
HYDROLOGY					
Wetland Hydrology Indicators:	Secondary Indicators (minimum of two required)				
Primary Indicators (minimum of one is required; check all that apply)	Surface Soil Cracks (B6)				
Surface Water (A1) True Aquatic Plants (I	B14) Sparsely Vegetated Concave Surface (B8)				
High Water Table (A2) Hydrogen Sulfide Odd					
Saturation (A3) Oxidized Rhizosphere					
Water Marks (B1) Presence of Reduced					
Sediment Deposits (B2) Recent Iron Reduction					
Drift Deposits (B3) Thin Muck Surface (C Algal Mat or Crust (B4) Other (Explain in Ren					
Algal Mat of Crust (B4) Other (Explain in Refi	Geomorphic Position (D2)				
Indit Deposits (ED) Inundation Visible on Aerial Imagery (B7)	Shallow Aquitard (D3)				
Water-Stained Leaves (B9)	Microtopographic Relief (D4)				
Aquatic Fauna (B13)	FAC-Neutral Test (D5)				
Field Observations:					
Surface Water Present? Yes No Depth (inches):					
Water Table Present? Yes No Depth (inches):					
Saturation Present? Yes No Depth (inches): (includes capillary fringe)	Wetland Hydrology Present? Yes No				
Describe Recorded Data (stream gauge, monitoring well, aerial photos, previous inspections), if available:					
Google Earth 2021, Web Soil Survey of Bucks Cou	inty				
Remarks:					
No wetland hydrology indicators were met.					
1					

Samp	ممنا	Daint	TD-13
Samo	lına	Hoint.	17-13

4F ft	Absolute	Dominant		Dominance Test worksheet:
<u>Tree Stratum</u> (Plot size: 15 ft r)		Species?		Number of Dominant Species
1. Liriodendron tulipifera	40		FACU	That Are OBL, FACW, or FAC: 2 (A)
2				Total Number of Dominant
3				Species Across All Strata: 5 (B)
4				Percent of Dominant Species
5				That Are OBL, FACW, or FAC: 40 (A/B)
6				
7.				Prevalence Index worksheet:
	40%	= Total Cov	er er	Total % Cover of: Multiply by:
50% of total cover: 20	20% of	total cover	8	OBL species $\frac{2}{x}$ $x = \frac{2}{x}$
Sapling/Shrub Stratum (Plot size: 15 ft r				FACW species $0 \times 2 = 0$
1. Lindera benzoin	30	~	FAC	FAC species 120 x 3 = 360
2. Rosa multiflora	20	~	FACU	FACU species <u>73</u>
3				UPL species <u>0</u> x 5 = <u>0</u>
4			• ——	Column Totals: <u>195</u> (A) <u>654</u> (B)
5				December 1 december 3.4
6				Prevalence Index = B/A = 3.4
7				Hydrophytic Vegetation Indicators:
8				1 - Rapid Test for Hydrophytic Vegetation
9.		-		2 - Dominance Test is >50%
<u>. </u>	50%	= Total Cov	· · · · · · · · · · · · · · · · · · ·	3 - Prevalence Index is ≤3.0 ¹
50% of total cover: 25		total cover		4 - Morphological Adaptations ¹ (Provide supporting
Herb Stratum (Plot size: 5 ft r)	20 /0 01	10101 00 101		data in Remarks or on a separate sheet)
1. Ficaria verna	80	~	FAC	Problematic Hydrophytic Vegetation ¹ (Explain)
2. Lindera benzoin	10		FAC	
3. Parthenocissus quinquefolia	3	-	FACU	¹ Indicators of hydric soil and wetland hydrology must
4 Persicaria sp.	3			be present, unless disturbed or problematic.
5 Symplocarpus foetidus	2		OBL	Definitions of Four Vegetation Strata:
<u> </u>	· 		<u> </u>	Tree – Woody plants, excluding vines, 3 in. (7.6 cm) or
6				more in diameter at breast height (DBH), regardless of
7	- ——		·	height.
8				Sapling/Shrub – Woody plants, excluding vines, less
9				than 3 in. DBH and greater than or equal to 3.28 ft (1
10				m) tall.
11				Herb – All herbaceous (non-woody) plants, regardless
		= Total Cov		of size, and woody plants less than 3.28 ft tall.
50% of total cover: 49	20% of	total cover	20	Woody vine – All woody vines greater than 3.28 ft in
Woody Vine Stratum (Plot size: 15 ft r)				height.
1. Celastrus orbiculatus	10		FACU_	
2				
3				
4				Herbranderstin
5.				Hydrophytic Vegetation
	400/	= Total Cov	er	Present? Yes No
50% of total cover: 5		total cover	_	
Remarks: (Include photo numbers here or on a separate				

No hydrophytic vegetation indicators were met.

Sampling Point: TP-13

Profile Desc	ription: (Describe	to the dep	th needed to docum	ent the i	ndicator	or confirm	the absence	of indicators.)	
Depth	Matrix		Redox	(Features	S				
(inches)	Color (moist)	%	Color (moist)	%	Type ¹	Loc ²	Texture	Remarks	
0 - 5	10YR 3/3	100					Silt Loam		
5 - 8	10YR 3/4	100					Loam	Small rock fragments throughout - 1	0%
					-				_
-									
¹Type: C=Co	ncentration D=Der	letion RM:	=Reduced Matrix, MS	=Masked	Sand Gra	ains	² Location: P	L=Pore Lining, M=Matrix.	
Hydric Soil I		nouon, rum	Troduced Matrix, Me	Macroca	Cana Ore			ators for Problematic Hydric Soils ³	:
Histosol			Dark Surface	(S7)				cm Muck (A10) (MLRA 147)	
	oipedon (A2)		Polyvalue Bel		ca (S8) (N	II DA 1 <i>1</i> 7		Coast Prairie Redox (A16)	
							140) C		
Black His			Thin Dark Su			47, 148)	_	(MLRA 147, 148)	
	n Sulfide (A4)		Loamy Gleye		F2)		P	Piedmont Floodplain Soils (F19)	
	l Layers (A5)		Depleted Mat					(MLRA 136, 147)	
2 cm Mu	ck (A10) (LRR N)		Redox Dark S	Surface (F	6)		V	ery Shallow Dark Surface (TF12)	
Depleted	l Below Dark Surfac	e (A11)	Depleted Dar	k Surface	(F7)		c	Other (Explain in Remarks)	
Thick Da	rk Surface (A12)		Redox Depre	ssions (F	8)				
Sandy M	lucky Mineral (S1) (I	LRR N,	Iron-Mangane	ese Masse	es (F12) (I	LRR N,			
	147, 148)		MLRA 136		, , ,				
	leyed Matrix (S4)		Umbric Surfa	•	MI RA 13	6. 122)	3Ind	licators of hydrophytic vegetation and	
	edox (S5)		Piedmont Flo					etland hydrology must be present,	
	Matrix (S6) ayer (if observed)	_	Red Parent M	iateriai (F	21) (WLK	A 127, 147	r) un	less disturbed or problematic.	
	cky substrate	•							
,									
Depth (inc	ches): o						Hydric Soil	Present? Yes No	_
Remarks:									
N	o hydric soil	indicat	ors were me	t.					
	•								

Project/Site: SR 0001 Section RC3 Improvement Project City	//County: Langhorne/Bucks Co. Sampling Date: 2021-05-11
Applicant/Owner: PennDOT	State: Pennsylvania Sampling Point: TP-14
Investigator(s): Craig Nein, Ginny Boone Sec	
Landform (hillslope, terrace, etc.): Depression Local r	
Subregion (LRR or MLRA): S 148 Lat: 40.165314	Long: -74.925849 Datum: WGS 84
Soil Map Unit Name: GrA- Glenville silt loam, 0 to 3 percent slo	
Are climatic / hydrologic conditions on the site typical for this time of year?	Yes No (If no, explain in Remarks.)
Are Vegetation, Soil, or Hydrology significantly dist	urbed? Are "Normal Circumstances" present? Yes No
Are Vegetation, Soil, or Hydrology naturally problem	matic? (If needed, explain any answers in Remarks.)
	impling point locations, transects, important features, etc.
Hydrophytic Vegetation Present? Hydric Soil Present? Wetland Hydrology Present? Remarks: Yes V No Yes No No Yes No Yes No No Remarks:	Is the Sampled Area within a Wetland? Yes No
	s to south of SR 0001 and west of WUS-4. The wetland narrow fingers that extend into the vicinity of the study
HYDROLOGY	
Wetland Hydrology Indicators:	Secondary Indicators (minimum of two required)
Water Marks (B1) Presence of Reduct Sediment Deposits (B2) Recent Iron Reduct Drift Deposits (B3) Thin Muck Surface Algal Mat or Crust (B4) Other (Explain in R Iron Deposits (B5) Inundation Visible on Aerial Imagery (B7) Water-Stained Leaves (B9) Aquatic Fauna (B13) Field Observations: Surface Water Present? Yes No Depth (inches): 1- Water Table Present? Yes No Depth (inches): 0 Saturation Present? Yes No Depth (inches): 0 (includes capillary fringe)	Dodor (C1) Leres on Living Roots (C3) Level Iron (C4) Lition in Tilled Soils (C6) Lemarks) Level Iron (C4) Level Iron (C4) Lition in Tilled Soils (C6) Level Iron (C4) Level Iron (C4)
Describe Recorded Data (stream gauge, monitoring well, aerial photos, p Google Earth 2021, Web Soil Survey of Bucks Co	
Remarks: Multiple wetland hydrology indicators were m	,
Hydrology supplied primarily by groundwater	seepage.

Samp	1:	Daint.	TD_1/
Samo	ıına	Hoint.	17-14

40 56	Absolute	Dominant	Indicator	Dominance Test worksheet:
Tree Stratum (Plot size: 10 x 5 ft)	% Cover	Species?	Status	Number of Dominant Species
1				That Are OBL, FACW, or FAC: 4 (A)
2				Total Number of Dominant
3				Species Across All Strata: 4 (B)
4				Descent of Descinant Coasias
5				Percent of Dominant Species That Are OBL, FACW, or FAC: 100 (A/B)
6				
7				Prevalence Index worksheet:
		= Total Cove	<u></u>	Total % Cover of: Multiply by:
50% of total cover:				OBL species 25 x 1 = 25
Sapling/Shrub Stratum (Plot size: 10 x 5 ft				FACW species 10 x 2 = 20
1 Lindera benzoin	40	~	FAC	FAC species 50 x 3 = 150
2. Rosa multiflora	5		FACU	FACU species 8 x 4 = 32
				UPL species 0 $x = 0$
3				Column Totals: 93 (A) 227 (B)
4				Column Totals. (A)
5				Prevalence Index = B/A = 2.4
6				Hydrophytic Vegetation Indicators:
7				1 - Rapid Test for Hydrophytic Vegetation
8				✓ 2 - Dominance Test is >50%
9				✓ 3 - Prevalence Index is ≤3.0 ¹
	45%	= Total Cove	er	4 - Morphological Adaptations ¹ (Provide supporting
50% of total cover: 23	20% of	total cover:	9	
Herb Stratum (Plot size: 10 x 5 ft)				data in Remarks or on a separate sheet)
1. Symplocarpus foetidus	25		OBL	Problematic Hydrophytic Vegetation ¹ (Explain)
2. Ficaria verna	10	✓	FAC	
3. Impatiens capensis	10	~	FACW	¹ Indicators of hydric soil and wetland hydrology must be present, unless disturbed or problematic.
4 Lonicera japonica	3		FACU	· ·
5				Definitions of Four Vegetation Strata:
				Tree – Woody plants, excluding vines, 3 in. (7.6 cm) or
6				more in diameter at breast height (DBH), regardless of
7				height.
8				Sapling/Shrub – Woody plants, excluding vines, less
9				than 3 in. DBH and greater than or equal to 3.28 ft (1
10				m) tall.
11				Herb – All herbaceous (non-woody) plants, regardless
		= Total Cove		of size, and woody plants less than 3.28 ft tall.
50% of total cover: 24	20% of	total cover:	10	Woody vine – All woody vines greater than 3.28 ft in
Woody Vine Stratum (Plot size: 10 x 5 ft)				height.
1				
2				
3				
4				
5.				Hydrophytic Vegetation
		= Total Cove		Present? Yes V No No
50% of total cover:				
Remarks: (Include photo numbers here or on a separate				

Hydrophytic vegetation indicator was met.

Plot sizes adjusted due to small size of this area of the wetland.

Sampling Point: TP-14

0 - 8 10YR 2/1 75 10YR 4/2 25 D M Mucky Learn/Clay Small rock fragments throughd Small rock fragments throughd Mucky Learn/Clay Small rock fragments throughd Small rock fragments throughd Small rock fragments throughd Mucky Learn/Clay Small rock fragments throughd Small rock fragments throughd Mucky Learn/Clay Small Reduck (S9) (MLRA 147, 148) Cast Prairie Redox (A16) (MLRA 148) (MLRA 136, 147) Very Shallow Dark Surface (F1) Cast Prairie Redox (A16) (MLRA 148) (MLRA 148) Mucky Learn/Clay Small Reduck (S1) (LRR N, MLRA 136, 142) Very Shallow Dark Surface (F1) Cast Rock Small Reduck Smal	Soil dominated by organic muck with some depleted mineral soils within. Small rock fragments throughout (20%). =Pore Lining, M=Matrix. tors for Problematic Hydric Soils ³ : cm Muck (A10) (MLRA 147) past Prairie Redox (A16) (MLRA 147, 148) edmont Floodplain Soils (F19) (MLRA 136, 147)	Mucky Loam		<u> </u>		%	Calar /r:-+\	concrete)
8 - 12 10YR 3/2 100	Small rock fragments throughout (20%). =Pore Lining, M=Matrix. tors for Problematic Hydric Soils ³ : cm Muck (A10) (MLRA 147) cast Prairie Redox (A16) (MLRA 147, 148) edmont Floodplain Soils (F19) (MLRA 136, 147)	<u> </u>	<u> </u>	25				
Type: C=Concentration, D=Depletion, RM=Reduced Matrix, MS=Masked Sand Grains. 2 Location: PL=Pore Lining, M=Matrix. 1 Indicators for Problematic Hydric 2 muck (A10) (MLRA 147) 4 Histic Epipedon (A2) Polyvalue Below Surface (S8) (MLRA 147, 148) Coast Prairie Redox (A16) 5 Black Histic (A3) Thin Dark Surface (S9) (MLRA 147, 148) (MLRA 147, 148) 6 Hydrogen Sulfide (A4) Loamy Gleyed Matrix (F2) Pelemont Floodplain Soils (F19) 7 Stratified Layers (A5) Depleted Matrix (F3) (MLRA 147, 148) 7 Stratified Layers (A5) Pelemont Floodplain Soils (F19) 8 Peleton Dark Surface (A11) Depleted Dark Surface (F6) Very Shallow Dark Surface (TF1) 9 Depleted Below Dark Surface (A12) Redox Depressions (F8) 9 Sandy Mucky Mineral (S1) (LRR N, MLRA 136) 9 Sandy Gleyed Matrix (S4) Umbric Surface (F19) (MLRA 148) wetland hydrology must be prese Stripped Matrix (S6) Red Parent Material (F21) (MLRA 127, 147) unless disturbed or problematic. 1 Redox Dark Surface (F19) (MLRA 127, 147) Red Parent Material (F21) (MLRA 127, 147) 1 Plecimarks: Note of Present? Yes Note Present? Yes Yes Present? Yes Yes Present Present? Yes Yes Present Present Present Present Problematics.	=Pore Lining, M=Matrix. tors for Problematic Hydric Soils ³ : cm Muck (A10) (MLRA 147) cast Prairie Redox (A16) (MLRA 147, 148) edmont Floodplain Soils (F19) (MLRA 136, 147)	Mucky Loam,		25	101R 4/2		•	
Histosol (A1) Histosol (A2) Histic Epipedon (A2) Black Histic (A3) Hydrogen Sulfide (A4) Depleted Matrix (F2) Depleted Below Dark Surface (A11) Thick Dark Surface (A12) Sandy Mucky Mineral (S1) (LRR N) Sandy Gleyed Matrix (S4) Sandy Gleyed Matrix (S4) Sandy Gleyed Matrix (S4) Sandy Redox (S5) Redox Depressions (F13) (MLRA 136, 122) Sandy Redox (S5) Redox Depressions (F19) (MLRA 136, 122) Sandy Redox (S5) Redox Depressions (F19) (MLRA 148) Redox Depressions (F19) (MLRA 148) Redox Depressions (F19) (MLRA 148) Sandy Redox (S5) Red Parent Material (F21) (MLRA 127, 147) Redox Depressions (F19) (MLRA 127, 147) Red	tors for Problematic Hydric Soils ³ : cm Muck (A10) (MLRA 147) past Prairie Redox (A16) (MLRA 147, 148) edmont Floodplain Soils (F19) (MLRA 136, 147)					100	10YR 3/2	8 - 12
ydric Soil Indicators: Histosol (A1) Dark Surface (S7) Histic Epipedon (A2) Polyvalue Below Surface (S8) (MLRA 147, 148) Black Histic (A3) Thin Dark Surface (S9) (MLRA 147, 148) Hydrogen Sulfide (A4) Stratified Layers (A5) Depleted Matrix (F2) Depleted Below Dark Surface (A11) Thick Dark Surface (A12) Sandy Mucky Mineral (S1) (LRR N) Sandy Gleyed Matrix (S4) Sandy Gleyed Matrix (S4) Sandy Redox (S5) Depleted Matrix (F13) MLRA 136, 147) MLRA 147, 148) MIRA 147, 148) Sandy Redox (S5) Sandy Redox (S5) Piedmont Floodplain Soils (F19) (LRR N, MLRA 136, 122) Sandy Redox (S5) Piedmont Floodplain Soils (F19) (MLRA 148) Sandy Redox (S5) Piedmont Floodplain Soils (F19) (MLRA 148) Red Parent Material (F21) (MLRA 127, 147) Red Parent Material (F21) (MLRA 127, 147) Red Parent Material (F21) (MLRA 127, 147) Betrictive Layer (if observed): Type: Depth (inches): Depth (inches): Depth (inches): Dark Surface (S7) Polyvalue Below Surface (S8) (MLRA 147, 148) MLRA 147, 148) MLRA 147, 148) MLRA 147, 148) MIRA 147, 148) MIRA 136, 147) Very Shallow Dark Surface (F19) Other (Explain in Remarks) Other (Explain in Remarks) All dicators of hydrophytic vegetatic wetland hydrology must be prese unless disturbed or problematic. Betrictive Layer (if observed): Type: Depth (inches): Depth (inches): Hydric Soil Present? Yes Value And Naterial (P21) (MLRA 127, 147)	tors for Problematic Hydric Soils ³ : cm Muck (A10) (MLRA 147) past Prairie Redox (A16) (MLRA 147, 148) edmont Floodplain Soils (F19) (MLRA 136, 147)							-
ydric Soil Indicators: Histosol (A1) Dark Surface (S7) Histic Epipedon (A2) Polyvalue Below Surface (S8) (MLRA 147, 148) Black Histic (A3) Thin Dark Surface (S9) (MLRA 147, 148) Hydrogen Sulfide (A4) Stratified Layers (A5) Depleted Matrix (F2) Depleted Below Dark Surface (A11) Thick Dark Surface (A12) Sandy Mucky Mineral (S1) (LRR N) Sandy Gleyed Matrix (S4) Sandy Gleyed Matrix (S4) Sandy Redox (S5) Depleted Matrix (F13) MLRA 136, 147) MLRA 147, 148) MIRA 147, 148) Sandy Redox (S5) Sandy Redox (S5) Piedmont Floodplain Soils (F19) (LRR N, MLRA 136, 122) Sandy Redox (S5) Piedmont Floodplain Soils (F19) (MLRA 148) Sandy Redox (S5) Piedmont Floodplain Soils (F19) (MLRA 148) Red Parent Material (F21) (MLRA 127, 147) Red Parent Material (F21) (MLRA 127, 147) Red Parent Material (F21) (MLRA 127, 147) Betrictive Layer (if observed): Type: Depth (inches): Depth (inches): Depth (inches): Dark Surface (S7) Polyvalue Below Surface (S8) (MLRA 147, 148) MLRA 147, 148) MLRA 147, 148) MLRA 147, 148) MIRA 147, 148) MIRA 136, 147) Very Shallow Dark Surface (F19) Other (Explain in Remarks) Other (Explain in Remarks) All dicators of hydrophytic vegetatic wetland hydrology must be prese unless disturbed or problematic. Betrictive Layer (if observed): Type: Depth (inches): Depth (inches): Hydric Soil Present? Yes Value And Naterial (P21) (MLRA 127, 147)	tors for Problematic Hydric Soils ³ : cm Muck (A10) (MLRA 147) past Prairie Redox (A16) (MLRA 147, 148) edmont Floodplain Soils (F19) (MLRA 136, 147)							-
Histosol (A1) Histosol (A2) Histic Epipedon (A2) Black Histic (A3) Hydrogen Sulfide (A4) Depleted Matrix (F2) Depleted Below Dark Surface (A11) Thick Dark Surface (A12) Sandy Mucky Mineral (S1) (LRR N) Sandy Gleyed Matrix (S4) Sandy Gleyed Matrix (S4) Sandy Gleyed Matrix (S4) Sandy Redox (S5) Redox Depressions (F13) (MLRA 136, 122) Sandy Redox (S5) Redox Depressions (F19) (MLRA 136, 122) Sandy Redox (S5) Redox Depressions (F19) (MLRA 148) Redox Depressions (F19) (MLRA 148) Redox Depressions (F19) (MLRA 148) Sandy Redox (S5) Red Parent Material (F21) (MLRA 127, 147) Redox Depressions (F19) (MLRA 127, 147) Red	tors for Problematic Hydric Soils ³ : cm Muck (A10) (MLRA 147) past Prairie Redox (A16) (MLRA 147, 148) edmont Floodplain Soils (F19) (MLRA 136, 147)		 -				-	
Histosol (A1) Histosol (A2) Histic Epipedon (A2) Black Histic (A3) Hydrogen Sulfide (A4) Depleted Matrix (F2) Depleted Below Dark Surface (A11) Thick Dark Surface (A12) Sandy Mucky Mineral (S1) (LRR N) Sandy Gleyed Matrix (S4) Sandy Gleyed Matrix (S4) Sandy Gleyed Matrix (S4) Sandy Redox (S5) Redox Depressions (F13) (MLRA 136, 122) Sandy Redox (S5) Redox Depressions (F19) (MLRA 136, 122) Sandy Redox (S5) Redox Depressions (F19) (MLRA 148) Redox Depressions (F19) (MLRA 148) Redox Depressions (F19) (MLRA 148) Sandy Redox (S5) Red Parent Material (F21) (MLRA 127, 147) Redox Depressions (F19) (MLRA 127, 147) Red	tors for Problematic Hydric Soils ³ : cm Muck (A10) (MLRA 147) past Prairie Redox (A16) (MLRA 147, 148) edmont Floodplain Soils (F19) (MLRA 136, 147)					_	-	
ydric Soil Indicators: Histosol (A1) Dark Surface (S7) Histic Epipedon (A2) Polyvalue Below Surface (S8) (MLRA 147, 148) Black Histic (A3) Thin Dark Surface (S9) (MLRA 147, 148) Hydrogen Sulfide (A4) Stratified Layers (A5) Depleted Matrix (F2) Depleted Below Dark Surface (A11) Thick Dark Surface (A12) Sandy Mucky Mineral (S1) (LRR N) Sandy Gleyed Matrix (S4) Sandy Gleyed Matrix (S4) Sandy Redox (S5) Depleted Matrix (F13) MLRA 136, 147) MLRA 147, 148) MIRA 147, 148) Sandy Redox (S5) Sandy Redox (S5) Piedmont Floodplain Soils (F19) (LRR N, MLRA 136, 122) Sandy Redox (S5) Piedmont Floodplain Soils (F19) (MLRA 148) Sandy Redox (S5) Piedmont Floodplain Soils (F19) (MLRA 148) Red Parent Material (F21) (MLRA 127, 147) Red Parent Material (F21) (MLRA 127, 147) Red Parent Material (F21) (MLRA 127, 147) Betrictive Layer (if observed): Type: Depth (inches): Depth (inches): Depth (inches): Dark Surface (S7) Polyvalue Below Surface (S8) (MLRA 147, 148) MLRA 147, 148) MLRA 147, 148) MLRA 147, 148) MIRA 147, 148) MIRA 136, 147) Very Shallow Dark Surface (F19) Other (Explain in Remarks) Other (Explain in Remarks) All dicators of hydrophytic vegetatic wetland hydrology must be prese unless disturbed or problematic. Betrictive Layer (if observed): Type: Depth (inches): Depth (inches): Hydric Soil Present? Yes Value And Naterial (P21) (MLRA 127, 147)	tors for Problematic Hydric Soils ³ : cm Muck (A10) (MLRA 147) past Prairie Redox (A16) (MLRA 147, 148) edmont Floodplain Soils (F19) (MLRA 136, 147)							
Histosol (A1) Histosol (A2) Black Histic (A3) Hydrogen Sulfide (A4) Stratified Layers (A5) Depleted Below Dark Surface (S9) Below Dark Surface (A11) Depleted Dark Surface (F6) Sandy Mucky Mineral (S1) (LRR N) Sandy Mucky Mineral (S1) (LRR N) Sandy Gleyed Matrix (S4) Sandy Redox (S5) Redox Depressions (F8) Sandy Redox (S5) Redox Depressions (F12) (LRR N, MLRA 136, 122) Sandy Redox (S5) Redox Depressions (F13) (MLRA 136, 122) Sandy Redox (S5) Redox Depressions (F13) (MLRA 136, 122) Sandy Redox (S5) Redox Depressions (F13) (MLRA 136, 122) Sandy Redox (S5) Red Parent Material (F21) (MLRA 148) wetland hydrology must be prese unless disturbed or problematic. Betrictive Layer (if observed): Type: Depth (inches): Dear Muck Surface (S9) (MLRA 147, 148) Loany Gleyed Matrix (P2) Piedmont Floodplain Soils (F19) MLRA 136, 147) Very Shallow Dark Surface (F19) When (Explain in Remarks) Other (Explain in Remarks) Other (Explain in Remarks) Inches (F13) (MLRA 136, 122) Similar (F13) (MLRA 136, 122) And (F13) (MLRA 148) Wetland hydrology must be prese unless disturbed or problematic. When (F13) (MLRA 127, 147) Depth (inches): Depth (inches): Depth (inches): Depth (inches): Depth (inches): Depth (inches):	tors for Problematic Hydric Soils ³ : cm Muck (A10) (MLRA 147) past Prairie Redox (A16) (MLRA 147, 148) edmont Floodplain Soils (F19) (MLRA 136, 147)							-
Histosol (A1) Histosol (A2) Black Histic (A3) Hydrogen Sulfide (A4) Stratified Layers (A5) Depleted Below Dark Surface (S9) Below Dark Surface (A11) Depleted Dark Surface (F6) Sandy Mucky Mineral (S1) (LRR N) Sandy Mucky Mineral (S1) (LRR N) Sandy Gleyed Matrix (S4) Sandy Redox (S5) Redox Depressions (F8) Sandy Redox (S5) Redox Depressions (F12) (LRR N, MLRA 136, 122) Sandy Redox (S5) Redox Depressions (F13) (MLRA 136, 122) Sandy Redox (S5) Redox Depressions (F13) (MLRA 136, 122) Sandy Redox (S5) Redox Depressions (F13) (MLRA 136, 122) Sandy Redox (S5) Red Parent Material (F21) (MLRA 148) wetland hydrology must be prese unless disturbed or problematic. Betrictive Layer (if observed): Type: Depth (inches): Dear Muck Surface (S9) (MLRA 147, 148) Loany Gleyed Matrix (P2) Piedmont Floodplain Soils (F19) MLRA 136, 147) Very Shallow Dark Surface (F19) When (Explain in Remarks) Other (Explain in Remarks) Other (Explain in Remarks) Inches (F13) (MLRA 136, 122) Similar (F13) (MLRA 136, 122) And (F13) (MLRA 148) Wetland hydrology must be prese unless disturbed or problematic. When (F13) (MLRA 127, 147) Depth (inches): Depth (inches): Depth (inches): Depth (inches): Depth (inches): Depth (inches):	tors for Problematic Hydric Soils ³ : cm Muck (A10) (MLRA 147) past Prairie Redox (A16) (MLRA 147, 148) edmont Floodplain Soils (F19) (MLRA 136, 147)							_
Histosol (A1) Histosol (A2) Histic Epipedon (A2) Black Histic (A3) Hydrogen Sulfide (A4) Depleted Matrix (F2) Depleted Below Dark Surface (A11) Thick Dark Surface (A12) Sandy Mucky Mineral (S1) (LRR N) Sandy Gleyed Matrix (S4) Sandy Gleyed Matrix (S4) Sandy Gleyed Matrix (S4) Sandy Redox (S5) Redox Depressions (F13) (MLRA 136, 122) Sandy Redox (S5) Redox Depressions (F19) (MLRA 136, 122) Sandy Redox (S5) Redox Depressions (F19) (MLRA 148) Redox Depressions (F19) (MLRA 148) Redox Depressions (F19) (MLRA 148) Sandy Redox (S5) Red Parent Material (F21) (MLRA 127, 147) Redox Depressions (F19) (MLRA 127, 147) Red	tors for Problematic Hydric Soils ³ : cm Muck (A10) (MLRA 147) past Prairie Redox (A16) (MLRA 147, 148) edmont Floodplain Soils (F19) (MLRA 136, 147)						-	
ydric Soil Indicators: Histosol (A1) Dark Surface (S7) Histic Epipedon (A2) Polyvalue Below Surface (S8) (MLRA 147, 148) Black Histic (A3) Thin Dark Surface (S9) (MLRA 147, 148) Hydrogen Sulfide (A4) Stratified Layers (A5) Depleted Matrix (F2) Depleted Below Dark Surface (A11) Thick Dark Surface (A12) Sandy Mucky Mineral (S1) (LRR N) Sandy Gleyed Matrix (S4) Sandy Gleyed Matrix (S4) Sandy Redox (S5) Depleted Matrix (F13) MLRA 136, 147) MLRA 147, 148) MIRA 147, 148) Sandy Redox (S5) Sandy Redox (S5) Piedmont Floodplain Soils (F19) (LRR N, MLRA 136, 122) Sandy Redox (S5) Piedmont Floodplain Soils (F19) (MLRA 148) Sandy Redox (S5) Piedmont Floodplain Soils (F19) (MLRA 148) Red Parent Material (F21) (MLRA 127, 147) Red Parent Material (F21) (MLRA 127, 147) Red Parent Material (F21) (MLRA 127, 147) Betrictive Layer (if observed): Type: Depth (inches): Depth (inches): Depth (inches): Dark Surface (S7) Polyvalue Below Surface (S8) (MLRA 147, 148) MLRA 147, 148) MLRA 147, 148) MLRA 147, 148) MIRA 147, 148) MIRA 136, 147) Very Shallow Dark Surface (F19) Other (Explain in Remarks) Other (Explain in Remarks) All dicators of hydrophytic vegetatic wetland hydrology must be prese unless disturbed or problematic. Betrictive Layer (if observed): Type: Depth (inches): Depth (inches): Hydric Soil Present? Yes Value And Naterial (P21) (MLRA 127, 147)	tors for Problematic Hydric Soils ³ : cm Muck (A10) (MLRA 147) past Prairie Redox (A16) (MLRA 147, 148) edmont Floodplain Soils (F19) (MLRA 136, 147)					_	-	
Histosol (A1) Histosol (A2) Black Histic (A3) Hydrogen Sulfide (A4) Stratified Layers (A5) Depleted Below Dark Surface (S9) Below Dark Surface (A11) Depleted Dark Surface (F6) Sandy Mucky Mineral (S1) (LRR N) Sandy Mucky Mineral (S1) (LRR N) Sandy Gleyed Matrix (S4) Sandy Redox (S5) Redox Depressions (F8) Sandy Redox (S5) Redox Depressions (F12) (LRR N, MLRA 136, 122) Sandy Redox (S5) Redox Depressions (F13) (MLRA 136, 122) Sandy Redox (S5) Redox Depressions (F13) (MLRA 136, 122) Sandy Redox (S5) Redox Depressions (F13) (MLRA 136, 122) Sandy Redox (S5) Red Parent Material (F21) (MLRA 148) wetland hydrology must be prese unless disturbed or problematic. Betrictive Layer (if observed): Type: Depth (inches): Dear Muck Surface (S9) (MLRA 147, 148) Loany Gleyed Matrix (P2) Piedmont Floodplain Soils (F19) MLRA 136, 147) Very Shallow Dark Surface (F19) When (Explain in Remarks) Other (Explain in Remarks) Other (Explain in Remarks) Inches (F13) (MLRA 136, 122) Similar (F13) (MLRA 136, 122) And (F13) (MLRA 148) Wetland hydrology must be prese unless disturbed or problematic. When (F13) (MLRA 127, 147) Depth (inches): Depth (inches): Depth (inches): Depth (inches): Depth (inches): Depth (inches):	tors for Problematic Hydric Soils ³ : cm Muck (A10) (MLRA 147) past Prairie Redox (A16) (MLRA 147, 148) edmont Floodplain Soils (F19) (MLRA 136, 147)							
Histosol (A1) Histosol (A2) Histic Epipedon (A2) Black Histic (A3) Hydrogen Sulfide (A4) Stratified Layers (A5) Depleted Matrix (F2) Depleted Below Dark Surface (A11) Thick Dark Surface (A12) Sandy Mucky Mineral (S1) (LRR N, MLRA 147, 148) Sandy Gleyed Matrix (S4) Sandy Redox (S5) Stripped Matrix (S4) Sandy Redox (S5) Stripped Matrix (S6) Person Muck (A10) (MLRA 147, 148) Depleted Matrix (F2) Redox Dark Surface (F6) Depleted Dark Surface (F7) Redox Depressions (F8) Iron-Manganese Masses (F12) (LRR N, MLRA 136, 122) Piedmont Floodplain Soils (F19) (MLRA 136, 122) Jindicators of hydrophytic vegetatic wetland hydrology must be prese and problematic. Bestrictive Layer (if observed): Type: Depth (inches): Depth (inches): Hydric Soil Present? Yes Note that the polyvalue Below Surface (S7) Coast Prairie Redox (A16) (MLRA 147, 148) (MLRA 147, 148) Piedmont Floodplain Soils (F19) MLRA 136, 122) Jindicators of hydrophytic vegetatic wetland hydrology must be prese unless disturbed or problematic. Betrictive Layer (if observed): Type: Depth (inches): Depth (inches): Hydric Soil Present? Yes Note that the polyvalue Alay in the problematic and problematic	cm Muck (A10) (MLRA 147) hast Prairie Redox (A16) (MLRA 147, 148) hedmont Floodplain Soils (F19) (MLRA 136, 147)		and Grains.	S=Masked	I=Reduced Matrix, MS	pletion, RM	oncentration, D=De	ype: C=C
Histic Epipedon (A2) Black Histic (A3) Hydrogen Sulfide (A4) Stratified Layers (A5) Depleted Matrix (F3) Depleted Below Dark Surface (A11) Thick Dark Surface (A12) Sandy Mucky Mineral (S1) (LRR N, MLRA 147, 148) Sandy Gleyed Matrix (S4) Sandy Redox (S5) Stripped Matrix (S6) Stripped Matrix (S6) Stripped Matrix (S6) Stripped Matrix (S6) Depth (inches): Depth (inches): Depth (inches): Depth (inches): Depteted Below Surface (S8) (MLRA 147, 148) (MLRA 147, 148) (MLRA 147, 148) (MLRA 147, 148) Piedmont Floodplain Soils (F19) (MLRA 147, 148) Other (Explain in Remarks) Coast Prairie Redox (A16) (MLRA 147, 148) (MLRA 147, 148) Piedmont Floodplain Soils (F19) (MLRA 147, 148) NURA 136, Umbric Surface (F7) Stripped Matrix (S6) Red Parent Material (F21) (MLRA 148) Redox Depressions (F8) Umbric Surface (F13) (MLRA 146) Wetland hydrology must be prese unless disturbed or problematic. Hydric Soil Present? Yes Volumers Note that 147, 148 (P19) Note that 147, 148 (P19) Wetland hydrology must be prese unless disturbed or problematic. Hydric Soil Present? Yes Note that 147, 148 (P19) Note that 147, 148 (P19) Wetland hydrology must be prese unless disturbed or problematic. Hydric Soil Present? Yes Note that 147, 148 (P19) Note that 147, 148 (P19) Wetland hydrology must be prese unless disturbed or problematic.	oast Prairie Redox (A16) (MLRA 147, 148) edmont Floodplain Soils (F19) (MLRA 136, 147)	Ir					Indicators:	ydric Soil
	(MLRA 147, 148) edmont Floodplain Soils (F19) (MLRA 136, 147)	_		(S7)	Dark Surface		(A1)	_ Histosol
	edmont Floodplain Soils (F19) (MLRA 136, 147)	147, 148)	(S8) (MLRA 14	low Surfa	Polyvalue Be		pipedon (A2)	/ Histic Ep
Stratified Layers (A5) Depleted Matrix (F3) (MLRA 136, 147) Very Shallow Dark Surface (TF1 Depleted Below Dark Surface (A11) Depleted Dark Surface (F6) Very Shallow Dark Surface (TF1 Other (Explain in Remarks) Very Shallow Dark Surface (TF1 Other (Explain in Remarks) Needox Depressions (F8) Pedox Depressions (F8) Needox Depressions (F12) (MLRA 136, 122) Needox Depressions (F8) Needox Depressions (F12) (MLRA 136, 122) Needox Depressions (F12) (MLRA 136, 122) Needox Depressions (F12) (MLRA 148)	(MLRA 136, 147)	l8)	ILRA 147, 148	rface (S9	Thin Dark Su		istic (A3)	_ Black Hi
2 cm Muck (A10) (LRR N) Redox Dark Surface (F6) Very Shallow Dark Surface (TF1 Depleted Below Dark Surface (A11) Depleted Dark Surface (F7) Other (Explain in Remarks) Thick Dark Surface (A12) Redox Depressions (F8) Sandy Mucky Mineral (S1) (LRR N, MLRA 136) Sandy Gleyed Matrix (S4) Umbric Surface (F13) (MLRA 136, 122) Sandy Redox (S5) Piedmont Floodplain Soils (F19) (MLRA 148) wetland hydrology must be prese gripped Matrix (S6) Red Parent Material (F21) (MLRA 127, 147) unless disturbed or problematic. Type: Depth (inches): Hydric Soil Present? Yes Note that the present is the present of the present is the present in the present is the presen		_)	d Matrix (Loamy Gleye		en Sulfide (A4)	_ Hydroge
	Ob - II D O (TE40)			trix (F3)	Depleted Ma		d Layers (A5)	_ Stratified
_ Thick Dark Surface (A12) Redox Depressions (F8) _ Sandy Mucky Mineral (S1) (LRR N,	ry Snallow Dark Surface (1F12)	_		Surface (F	Redox Dark S		uck (A10) (LRR N)	_ 2 cm Mu
Sandy Mucky Mineral (S1) (LRR N, MLRA 147, 148)	ner (Explain in Remarks)	_	7)	k Surface	Depleted Dar	ce (A11)	d Below Dark Surfa	_ Depleted
MLRA 147, 148) _ Sandy Gleyed Matrix (S4) _ Sandy Redox (S5) _ Stripped Matrix (S6) _ Red Parent Material (F21) (MLRA 127, 147) _ Stripped Matrix (S6) _ Red Parent Material (F21) (MLRA 127, 147) _ Stripped Matrix (S6) _ Red Parent Material (F21) (MLRA 127, 147) _ Stripped Matrix (S6) _ Red Parent Material (F21) (MLRA 127, 147) _ Stripped Matrix (S6) _ Red Parent Material (F21) (MLRA 127, 147) _ Stripped Matrix (S6) _ Red Parent Material (F21) (MLRA 127, 147) _ Stripped Matrix (S6) _ Red Parent Material (F21) (MLRA 127, 147) _ Stripped Matrix (S6) _ Red Parent Material (F21) (MLRA 127, 147) _ Stripped Matrix (S6) _ Red Parent Material (F21) (MLRA 127, 147) _ Stripped Matrix (S6) _ Red Parent Material (F21) (MLRA 127, 147) _ Stripped Matrix (S6) _ Red Parent Material (F21) (MLRA 127, 147) _ Stripped Matrix (S6) _ Red Parent Material (F21) (MLRA 127, 147) _ Stripped Matrix (S6) _ Red Parent Material (F21) (MLRA 127, 147) _ Stripped Matrix (S6) _ Red Parent Material (F21) (MLRA 127, 147) _ Stripped Matrix (S6) _ Red Parent Material (F21) (MLRA 127, 147) _ Stripped Matrix (S6) _ Red Parent Material (F21) (MLRA 127, 147) _ Stripped Matrix (S6) _ Red Parent Material (F21) (MLRA 127, 147) _ Stripped Matrix (S6) _ Red Parent Material (F21) (MLRA 127, 147) _ Stripped Matrix (S6) _ Red Parent Material (F21) (MLRA 127, 147) _ Stripped Matrix (S6) _ Red Parent Material (F21) (MLRA 127, 147) _ Stripped Matrix (S6) _ Red Parent Material (F21) (MLRA 127, 147) _ Stripped Matrix (S6) _ Red Parent Material (F21) (MLRA 127, 147) _ Stripped Matrix (S6) _ Stripped Matrix (S6) _ Red Parent Material (F21) (MLRA 127, 147) _ Stripped Matrix (S6) _ Stripped								
Sandy Gleyed Matrix (S4) Umbric Surface (F13) (MLRA 136, 122) Sandy Redox (S5)		l,	(F12) (LRR N ,			(LRR N,		
Sandy Redox (S5) Piedmont Floodplain Soils (F19) (MLRA 148) wetland hydrology must be prese Stripped Matrix (S6) Red Parent Material (F21) (MLRA 127, 147) unless disturbed or problematic. Stripped Matrix (S6)				-				
Stripped Matrix (S6) Red Parent Material (F21) (MLRA 127, 147) unless disturbed or problematic. Restrictive Layer (if observed): Type: Depth (inches): Hydric Soil Present? Yes Notestards:								
Restrictive Layer (if observed): Type: Depth (inches): Remarks: Hydric Soil Present? Yes No								
Type: Depth (inches): Note that the second se	ess disturbed or problematic.	, 147)) (MLRA 127 , 1	/laterial (F	Red Parent N			
Depth (inches): Note that the second s):	Layer (if observed	estrictive l
Remarks:	_							Type:
	Present? Yes V No	Hydric					ches):	Depth (in
Tryunc son maicator was met.					was met.	aicator	iyanc son ind	П

Project/Site: SR 0001 Section	on RC3 Improvem	nent Project City/C	ounty: Langhorne/Bucl	ks Co.	Sampling Date: 2021-05-11
Applicant/Owner: PennDOT					Sampling Point: TP-15
Investigator(s):Craig Nein, Gir	nny Boone	Section	on, Township, Range:		
Landform (hillslope, terrace, etc.			·		Slone (%)· 2
Subregion (LRR or MLRA): S1					Datum: WGS 84
Soil Map Unit Name: GrA- Gle		to 3 percent slop	Long. 74.0	20770	N/A
Are climatic / hydrologic condition					_
Are Vegetation, Soil	, or Hydrology	significantly distur	bed? Are "Normal C	circumstances" pr	resent? Yes No
Are Vegetation, Soil	, or Hydrology	naturally problema	ntic? (If needed, exp	plain any answer	s in Remarks.)
SUMMARY OF FINDING	S – Attach site n	nap showing sam	pling point location	s, transects,	important features, etc.
Hydrophytic Vegetation Preser	nt? Yes	No 🗸			
Hydric Soil Present?	Yes	No 🗸	Is the Sampled Area	Voo	No. 4
Wetland Hydrology Present?	Yes —	No 🗸	within a Wetland?	Yes	No 🗸
Remarks:					
Wooded area upslo	pe from WET	-C. Upland plo	t associated with	n TP-14/W	ET-C.
HYDROLOGY					ana (mainina uma af feua na muina d)
Wetland Hydrology Indicator		ok all that apply)	-		ors (minimum of two required)
Primary Indicators (minimum o				Surface Soil C	, ,
Surface Water (A1)High Water Table (A2)		True Aquatic Plants (I Hydrogen Sulfide Odd		_ Sparsely vego _ Drainage Patt	etated Concave Surface (B8)
Saturation (A3)				Drainage Fall Moss Trim Lir	
Water Marks (B1)		Presence of Reduced			Vater Table (C2)
Sediment Deposits (B2)		Recent Iron Reductio		Crayfish Burro	
Drift Deposits (B3)		Thin Muck Surface (C			sible on Aerial Imagery (C9)
Algal Mat or Crust (B4)		Other (Explain in Ren			ressed Plants (D1)
Iron Deposits (B5)			_	Geomorphic F	Position (D2)
Inundation Visible on Aeria	al Imagery (B7)		-	Shallow Aquit	ard (D3)
Water-Stained Leaves (B9	3)		_	Microtopograp	phic Relief (D4)
Aquatic Fauna (B13)			-	FAC-Neutral [¬]	Γest (D5)
Field Observations:	.,				
Surface Water Present?		_ Depth (inches):			
Water Table Present?		_ Depth (inches):			/
Saturation Present? (includes capillary fringe)	Yes No	_ Depth (inches):	Wetland Hy	drology Present	? Yes No
Describe Recorded Data (strea Google Earth 2021, V				able:	
No wetland hydrolo	gy indicators	were met.			

Samp	lina	Point:	TP-15
Sallib	III IU	rollit.	

10.4	Absolute	Dominant		Dominance Test worksheet:
Tree Stratum (Plot size: 10 ft r		Species?		Number of Dominant Species
1. Liriodendron tulipifera	50		FACU	That Are OBL, FACW, or FAC: 2 (A)
2	· 			Total Number of Dominant
3				Species Across All Strata: 5 (B)
4				Percent of Dominant Species
5				That Are OBL, FACW, or FAC: 40 (A/B)
6				
7.				Prevalence Index worksheet:
	50%	= Total Cov	er	Total % Cover of: Multiply by:
50% of total cover: 25	20% of	total cover:	10	OBL species 10 x 1 = 10
Sapling/Shrub Stratum (Plot size: 10 ft r				FACW species $0 \times 2 = 0$
1. Rosa multiflora	20	~	FACU	FAC species <u>80</u> x 3 = <u>240</u>
2. Lindera benzoin	10	~	FAC	FACU species <u>85</u> x 4 = <u>340</u>
3				UPL species 0 x 5 = 0
4				Column Totals: <u>175</u> (A) <u>590</u> (B)
5				
				Prevalence Index = B/A = 3.4
6				Hydrophytic Vegetation Indicators:
7				1 - Rapid Test for Hydrophytic Vegetation
8				2 - Dominance Test is >50%
9	30%			3 - Prevalence Index is ≤3.0 ¹
E00/ of total covery 15	20% of	= Total Cov		4 - Morphological Adaptations ¹ (Provide supporting
	20% 01	total cover.		data in Remarks or on a separate sheet)
Herb Stratum (Plot size: 5 ft r) 1. Ficaria verna	60	~	FAC	Problematic Hydrophytic Vegetation ¹ (Explain)
2. Lindera benzoin	10		FAC	
	10		FACU	¹ Indicators of hydric soil and wetland hydrology must
3. Lonicera japonica				be present, unless disturbed or problematic.
4. Symplocarpus foetidus	10 5		OBL	Definitions of Four Vegetation Strata:
5. Alliaria petiolata	<u> </u>		FACU	Tree Meady plants avaluding vines 2 in (7.6 cm) or
6				Tree – Woody plants, excluding vines, 3 in. (7.6 cm) or more in diameter at breast height (DBH), regardless of
7				height.
8				Sapling/Shrub – Woody plants, excluding vines, less
9	·			than 3 in. DBH and greater than or equal to 3.28 ft (1
10				m) tall.
11.				Herb – All herbaceous (non-woody) plants, regardless
	95%	= Total Cov	er	of size, and woody plants less than 3.28 ft tall.
50% of total cover: 48		total cover:		
Woody Vine Stratum (Plot size: 10 ft r)				Woody vine – All woody vines greater than 3.28 ft in height.
1. Vitis sp.	10	✓		noight.
2.				
3.				
4.		-		
5.	· 			Hydrophytic
J	10%	- Total Occ		Vegetation Present? Yes No
50% of total cover: 5		= Total Cov total cover:		
Remarks: (Include photo numbers here or on a separate s		total ouver.		

No hydrophytic vegetation indicators were met.

Plot sizes reduced due to proximity of roadway and wetland.

SOIL Sampling Point: TP-15

Profile Desc	ription: (Describe	to the dep	oth needed to docum	nent the	indicator	or confirn	the absenc	e of indicators.)
Depth	Matrix		Redo	x Feature	s .			
(inches)	Color (moist)	%	Color (moist)	%	Type ¹	Loc ²	Texture	Remarks
0 - 10	10YR 3/2	85	10YR 5/6	15			Loam	Second color not true redox feature, considered part of the matrix.
	-							
							-	
-								
					· ——			-
-								
						,		
	-			-				· ·
-								
								-
		letion, RM	=Reduced Matrix, MS	S=Maske	d Sand Gra	ains.	² Location:	PL=Pore Lining, M=Matrix.
Hydric Soil	Indicators:						Indi	cators for Problematic Hydric Soils ³ :
Histosol	(A1)		Dark Surface					2 cm Muck (A10) (MLRA 147)
Histic Ep	oipedon (A2)		Polyvalue Be				148)	Coast Prairie Redox (A16)
Black Hi	stic (A3)		Thin Dark Su	ırface (S9) (MLRA 1	47, 148)		(MLRA 147, 148)
Hydroge	n Sulfide (A4)		Loamy Gleye	ed Matrix	(F2)			Piedmont Floodplain Soils (F19)
Stratified	d Layers (A5)		Depleted Ma	trix (F3)				(MLRA 136, 147)
2 cm Mu	ick (A10) (LRR N)		Redox Dark S	Surface (I	- 6)		. <u></u> ,	Very Shallow Dark Surface (TF12)
Depleted	d Below Dark Surfac	e (A11)	Depleted Dar	rk Surface	e (F7)			Other (Explain in Remarks)
Thick Da	ark Surface (A12)		Redox Depre	essions (F	·8)			
Sandy M	lucky Mineral (S1) (LRR N,	Iron-Mangan	ese Mass	es (F12) (I	LRR N,		
MLRA	A 147, 148)		MLRA 13	6)				
	Bleyed Matrix (S4)		Umbric Surfa		(MLRA 13	6, 122)	³ In	dicators of hydrophytic vegetation and
	Redox (S5)		Piedmont Flo					vetland hydrology must be present,
-	Matrix (S6)		Red Parent N					nless disturbed or problematic.
	_ayer (if observed)			•			1	р
Type:		=						
							1	
Depth (in	ches):		<u></u>				Hydric So	il Present? Yes No 🗸
			tors were me					

Project/Site: SR 0001 Section RC3 Improvement	Project City/County: Langho	orne/Bucks Co.	Sampling Date: 2021-05-19
Applicant/Owner: PennDOT		State: Pennsylvania	
One in Main, Oinney Barna	Section, Township, Ra		
Landform (hillslope, terrace, etc.): Depression		-	
Subregion (LRR or MLRA): S 148 Lat: 40	.169209		Datum: WGS 84
Soil Map Unit Name: LkA- Lawrenceville silt loam,	0 to 3 percent slopes		
Are climatic / hydrologic conditions on the site typical for this			
Are Vegetation, Soil, or Hydrologys	significantly disturbed? Are	"Normal Circumstances" pre	esent? Yes V No No
Are Vegetation, Soil, or Hydrology r	naturally problematic? (If n	needed, explain any answers	s in Remarks.)
SUMMARY OF FINDINGS – Attach site map	showing sampling point	locations, transects,	important features, etc.
Hydrophytic Vegetation Present? Yes	No		
Trydrophlydd Vegetaddi'i Teoent:	Is the Sample		No
	No within a Wetla	and? Yes 🗸	No
Remarks:			
PEM wetland depression (WET-D) of	n east side of Rte 413	3 and south of SR	0001.
HYDROLOGY			
Wetland Hydrology Indicators:		Secondary Indicato	ors (minimum of two required)
Primary Indicators (minimum of one is required; check all t		Surface Soil C	· ·
	e Aquatic Plants (B14)		etated Concave Surface (B8)
	rogen Sulfide Odor (C1)	Drainage Patte	
	dized Rhizospheres on Living Roc		
	sence of Reduced Iron (C4) sent Iron Reduction in Tilled Soils		/ater Table (C2)
	n Muck Surface (C7)		ible on Aerial Imagery (C9)
	er (Explain in Remarks)		essed Plants (D1)
Iron Deposits (B5)		Geomorphic P	
Inundation Visible on Aerial Imagery (B7)		Shallow Aquita	
Water-Stained Leaves (B9)		Microtopograp	
Aquatic Fauna (B13)		FAC-Neutral T	est (D5)
Field Observations:			
Surface Water Present? Yes No De			
Water Table Present? Yes No De			
Saturation Present? Yes No Del (includes capillary fringe)	pth (inches): W	etland Hydrology Present?	? Yes No
Describe Recorded Data (stream gauge, monitoring well, a Google Earth 2021, Web Soil Survey of Remarks:	aerial photos, previous inspection f Bucks County	is), if available:	
Multiple wetland hydrology indicator	rs were met.		
Wetland overall was dry during surv	ey.		
	•		

Samp	lina	Point:	TP-16
Jailio	mu	r Ollit.	

	Absolute Dominant Indicator	Dominance Test worksheet:
Tree Stratum (Plot size: 10 ft r)	% Cover Species? Status	Number of Dominant Species
1	- <u> </u>	That Are OBL, FACW, or FAC: 1 (A)
2		Total Number of Deminent
3		Total Number of Dominant Species Across All Strata: 1 (B)
4		(E)
		Percent of Dominant Species
5		That Are OBL, FACW, or FAC: 100 (A/B)
6		Prevalence Index worksheet:
7		Total % Cover of: Multiply by:
	= Total Cover	
	20% of total cover:	
Sapling/Shrub Stratum (Plot size: 10 ft r)		FACW species $\frac{95}{9}$ $\times 2 = \frac{190}{9}$
1		FAC species $\frac{0}{2}$ $\times 3 = \frac{0}{2}$
2		FACU species <u>0</u> x 4 = <u>0</u>
3		UPL species <u>0</u> x 5 = <u>0</u>
4		Column Totals: 100 (A) 195 (B)
5		Prevalence Index = B/A = 2.0
6		Hydrophytic Vegetation Indicators:
7		✓ 1 - Rapid Test for Hydrophytic Vegetation
8		✓ 2 - Dominance Test is >50%
9	_ · · ·	✓ 3 - Prevalence Index is ≤3.0 ¹
	= Total Cover	4 - Morphological Adaptations ¹ (Provide supporting
50% of total cover:	20% of total cover:	
Herb Stratum (Plot size: 5 ft r		data in Remarks or on a separate sheet)
1 Phragmites australis	95 ✔ FACW	Problematic Hydrophytic Vegetation ¹ (Explain)
2 Typha latifolia	5 OBL	
		¹ Indicators of hydric soil and wetland hydrology must
3		be present, unless disturbed or problematic.
4		Definitions of Four Vegetation Strata:
5		Tree Moody plants evaluding vines 2 in (7.6 cm) or
6	- 	Tree – Woody plants, excluding vines, 3 in. (7.6 cm) or more in diameter at breast height (DBH), regardless of
7		height.
8	<u>, , , , , , , , , , , , , , , , , , , </u>	
9		Sapling/Shrub – Woody plants, excluding vines, less than 3 in. DBH and greater than or equal to 3.28 ft (1
10		m) tall.
11.		
''· <u>-</u>	100% = Total Cover	Herb – All herbaceous (non-woody) plants, regardless
E00/ of total cover: 50	20% of total cover: 20	of size, and woody plants less than 3.28 ft tall.
50% of total cover: <u>50</u>	20% of total cover20	Woody vine – All woody vines greater than 3.28 ft in
Woody Vine Stratum (Plot size: 10 ft r)		height.
1		
2		
3		
4		Hydrophytic
5		Vegetation
	= Total Cover	Present? Yes V No No
50% of total cover:	20% of total cover:	
Remarks: (Include photo numbers here or on a separate		
Hydrophytic vegetation indicator wa	as met.	

SOIL Sampling Point: TP-16

Profile Desc	ription: (Describe	to the de	pth needed to docu	ment the	indicator	or confirm	the absence	of indicators.)
Depth	Matrix			x Feature	es			
(inches)	Color (moist)	%	Color (moist)	%	Type ¹	Loc ²	Texture	Remarks
0 - 2	10YR 4/2	100					Silt Loam	Some root matter
2 - 7	10YR 4/3	85	10YR 4/6	15	С	PL / M	Clay Loam	
7 - 14	10YR 2/2	90	7.5YR 4/6	10	С	PL / M	Silty Clay Loam	
						-		
					· ·			
					. <u> </u>			
-								
_								
					·			
		oletion, RM	I=Reduced Matrix, M	S=Maske	d Sand Gr	ains.		L=Pore Lining, M=Matrix.
Hydric Soil								ators for Problematic Hydric Soils ³ :
Histosol	• •		Dark Surface					cm Muck (A10) (MLRA 147)
	oipedon (A2)		Polyvalue Be				148) C	oast Prairie Redox (A16)
· 	stic (A3)		Thin Dark Su		, .	147, 148)	5	(MLRA 147, 148)
	en Sulfide (A4)		Loamy Gleye		(F2)		P	iedmont Floodplain Soils (F19)
	d Layers (A5)		Depleted Ma	. ,	50)			(MLRA 136, 147)
	ick (A10) (LRR N)	o (A11)	✓ Redox Dark_ Depleted Da					ery Shallow Dark Surface (TF12)
	d Below Dark Surfac ark Surface (A12)	æ (ATT)	Redox Depre		. ,			ther (Explain in Remarks)
	Mucky Mineral (S1) (I DD N	Iron-Mangan			I DD N		
	A 147, 148)	LIXIX IV,	MLRA 13		663 (1 12) (LIXIX IV,		
	Gleyed Matrix (S4)		Umbric Surfa	•	(MI RA 11	36 122)	³ Ind	icators of hydrophytic vegetation and
	Redox (S5)		Piedmont Flo					tland hydrology must be present,
-	Matrix (S6)		Red Parent I					less disturbed or problematic.
	Layer (if observed)	•		Tratorial (I	21) (IIII 21)		1	isso distance of problematic.
Type:		-						
Depth (in	choc):						Hydric Soil	Present? Yes V No No
	uies)						Hydric 30ii	rieseiit: iesiio
Remarks:	ydric soil ind	licator	was met					
11	yunc son me	ilcatoi	was met.					

Project/Site: SR 0001 Section RC3 Improvement Project City/C	County: Langhorne/Bucks Co. Sampling Date: 2021-05-19
Applicant/Owner: PennDOT	State: Pennsylvania Sampling Point: TP-17
Investigator(s):Craig Nein, Ginny Boone Section	
Landform (hillslope, terrace, etc.): Upland Local reli	
	Long: -74.913480 Datum: WGS 84
Soil Map Unit Name: LkA- Lawrenceville silt loam, 0 to 3 percen	t slopes NWI classification: N/A
Are climatic / hydrologic conditions on the site typical for this time of year? Y	es No (If no, explain in Remarks.)
Are Vegetation, Soil, or Hydrology significantly distur	bed? Are "Normal Circumstances" present? Yes No
Are Vegetation, Soil, or Hydrology naturally problems	atic? (If needed, explain any answers in Remarks.)
SUMMARY OF FINDINGS – Attach site map showing sam	npling point locations, transects, important features, etc.
Hydrophytic Vegetation Present? Hydric Soil Present? Wetland Hydrology Present? Remarks: Yes Yes No V No V Remarks:	Is the Sampled Area within a Wetland? Yes No
Vegetated area adjacent to WET-D and mainta 16/WET-D.	ined lawn. Upland plot associated with TP-
HYDROLOGY	
Wetland Hydrology Indicators:	Secondary Indicators (minimum of two required)
Primary Indicators (minimum of one is required; check all that apply)	Surface Soil Cracks (B6)
Surface Water (A1) True Aquatic Plants (
High Water Table (A2) Hydrogen Sulfide Od	
Saturation (A3) Oxidized Rhizosphere	
Water Marks (B1) Presence of Reduced	
Sediment Deposits (B2) Recent Iron Reductio	
Drift Deposits (B3) Thin Muck Surface (C Algal Mat or Crust (B4) Other (Explain in Rer	
Algal Mat 01 Clust (B4) Other (Explain in Ref	Geomorphic Position (D2)
Inundation Visible on Aerial Imagery (B7)	Shallow Aquitard (D3)
Water-Stained Leaves (B9)	Microtopographic Relief (D4)
Aquatic Fauna (B13)	FAC-Neutral Test (D5)
Field Observations:	
Surface Water Present? Yes No Depth (inches):	
Water Table Present? Yes No Depth (inches):	
Saturation Present? Yes No Depth (inches): (includes capillary fringe)	Wetland Hydrology Present? Yes No
Describe Recorded Data (stream gauge, monitoring well, aerial photos, pre	
Google Earth 2021, Web Soil Survey of Bucks Cou	лцу
No wetland hydrology indicators were met.	
The mental my an energy maneatons mental men	

Samp	lina	Point:	TP-17
Sallib	III IU	r Ollit.	

40 50	Absolute	Dominant	Indicator	Dominance Test worksheet:
Tree Stratum (Plot size: 10 x 5 ft)		Species?		Number of Dominant Species
1. Liquidambar styraciflua	5		FAC	That Are OBL, FACW, or FAC: 4 (A)
2				Total Newsham of Danish and
3				Total Number of Dominant Species Across All Strata: 6 (B)
				Opecies Across Air Strata.
4				Percent of Dominant Species
5				That Are OBL, FACW, or FAC: 67 (A/B)
6				Prevalence Index worksheet:
7				
	5%	= Total Cov	er	Total % Cover of: Multiply by:
50% of total cover: 3	20% of	total cover:	1	OBL species $0 \times 1 = 0$
Sapling/Shrub Stratum (Plot size: 10 x 5 ft)				FACW species <u>3</u>
1 Rosa multiflora	10	~	FACU	FAC species 50 x 3 = 150
''				FACU species 20 x 4 = 80
2				UPL species $0 \times 5 = 0$
3	· 			
4	· . 			Column Totals: <u>73</u> (A) <u>236</u> (B)
5				Prevalence Index = B/A = 3.2
6				Hydrophytic Vegetation Indicators:
7				1 - Rapid Test for Hydrophytic Vegetation
8				
9.				✓ 2 - Dominance Test is >50%
<u> </u>	400/	= Total Cov		3 - Prevalence Index is ≤3.0¹
50% of total cover: 5	20% of		_	4 - Morphological Adaptations ¹ (Provide supporting
Herb Stratum (Plot size: 10 x 5 ft)	20 /0 01	total cover.		data in Remarks or on a separate sheet)
	25	~	FAC	Problematic Hydrophytic Vegetation ¹ (Explain)
1. Vitis vulpina				
2. Juncus tenuis	10		FAC	¹ Indicators of hydric soil and wetland hydrology must
3. Solidago altissima	10		FACU	be present, unless disturbed or problematic.
4. Toxicodendron radicans	10		FAC	Definitions of Four Vegetation Strata:
_{5.} Juncus effusus	3		FACW	
6				Tree – Woody plants, excluding vines, 3 in. (7.6 cm) or
7				more in diameter at breast height (DBH), regardless of height.
8				
				Sapling/Shrub – Woody plants, excluding vines, less
				than 3 in. DBH and greater than or equal to 3.28 ft (1 m) tall.
10				iii) taii.
11				Herb – All herbaceous (non-woody) plants, regardless
		= Total Cov		of size, and woody plants less than 3.28 ft tall.
50% of total cover: 29	20% of	total cover:	12	Woody vine – All woody vines greater than 3.28 ft in
Woody Vine Stratum (Plot size: 10 x 5 ft)				height.
1				- reigni
2				
3.				
4				Hydrophytic
5				Vegetation
		= Total Cov		Present? Yes No
50% of total cover:	20% of	total cover:		
Remarks: (Include photo numbers here or on a separate	choot)			II.

Hydrophytic vegetation indicator was met.

Plot sizes reduced due to proximity of wetland and maintained lawn.

SOIL Sampling Point: TP-17

Profile Desc	ription: (Describe	to the dep	th needed to docur	nent the	indicator	or confirn	n the absence	of indicators.)
Depth	Depth Matrix Redox Features							
(inches)	Color (moist)	<u>%</u>	Color (moist)	%	Type ¹	Loc ²	Texture	Remarks
0 - 4	10YR 3/3	97	10YR 4/6	3	С	M	Silt Loam	
4 - 10	10YR 4/4	90	10YR 3/6	10	С	М	Silt Loam	Small rock fragments (5%)
	-	-			· -			
					<u> </u>			
-								
_								
					· 	· 		
								
		letion, RM	=Reduced Matrix, MS	S=Maske	d Sand Gr	ains.		L=Pore Lining, M=Matrix.
Hydric Soil	Indicators:						Indica	ators for Problematic Hydric Soils ³ :
Histosol			Dark Surface					cm Muck (A10) (MLRA 147)
	oipedon (A2)		Polyvalue Be				, 148) C	coast Prairie Redox (A16)
	stic (A3)		Thin Dark Sເ			147, 148)		(MLRA 147, 148)
	en Sulfide (A4)		Loamy Gleye		(F2)		P	riedmont Floodplain Soils (F19)
	d Layers (A5)		Depleted Ma					(MLRA 136, 147)
	ick (A10) (LRR N)		Redox Dark	•				ery Shallow Dark Surface (TF12)
	d Below Dark Surfac	e (A11)	Depleted Da				0	Other (Explain in Remarks)
	ark Surface (A12)		Redox Depre					
	Mucky Mineral (S1) (I	LRR N,	Iron-Mangan		ses (F12) (LRR N,		
	A 147, 148)		MLRA 13		/MI DA 40	oc 400\	31	
	Gleyed Matrix (S4)		Umbric Surfa					icators of hydrophytic vegetation and
-	Redox (S5)		Piedmont Flo					etland hydrology must be present,
	Matrix (S6) Layer (if observed)		Red Parent N	viateriai (r	-21) (IVILR	A 127, 14	<i>t</i>) un	less disturbed or problematic.
	Layer (II observed)	•						
Type:								
Depth (in	ches):						Hydric Soil	Present? Yes No
Remarks:	o hydric soil	indica	tors were me	t.				
	,							

Appendix D Site Photographs

Photo 1: Looking southeast (downstream) along WUS-9 to the north of SR 0001, near the northeastern end of the study area. Photo taken April 19, 2021.

Photo 2: Looking east (downstream) along WUS-9 towards the headwall of the culvert crossing beneath SR 0001, in the northeastern portion of the study area. Photo taken April 19, 2021.

Photo 3: Looking southwest along SR 0001 southbound towards the Corn Crib Lane overpass, in the northeastern portion of the study area. Photo taken April 19, 2021.

Photo 4: Looking northeast towards maintained lawn and utility ROW located north of SR 0001, in the northeastern portion of the study area. Photo taken April 19, 2021.

Photo 5: Looking northwest towards Wetland E (WET-E), located north of SR 0001 and east of SR 0413, in the northeastern portion of the study area.

Photo taken April 19, 2021.

Photo 6: Looking south towards the TP-2 upland sample plot located to the south of Wetland E (WET-E), in the northeastern portion of the study area. Photo taken April 19, 2021.

Photo 7: Looking southeast along SR 0413 (S. Pine Street) from north of SR 0001. Photo taken April 19, 2021.

Photo 8: Looking southwest along the toe of slope on the north side of the West Gillam Avenue roadway embankment, to the west of SR 0413 (S. Pine Street). Photo taken April 19, 2021.

Photo 9: Looking northwest (upstream) along WUS-3, to the north of SR 0001 and east of South Bellevue Avenue. Photo taken April 19, 2021.

Photo 10: Looking southeast (downstream) along WUS-3 towards the pipe headwall on the northern side of SR 0001. Photo taken April 19, 2021.

Photo 11: Looking southwest towards the TP-3 sample plot within Wetland 1 (WET-1), to the north of SR 0001 and east of South Bellevue Avenue. Photo taken April 19, 2021.

Photo 12: Looking east towards the eastern side of Wetland 1 (WET-1), to the north of SR 0001 and east of South Bellevue Avenue. Photo taken April 19, 2021.

Photo 13: Looking southwest towards the TP-4 sample plot within Wetland 2 (WET-2), to the north of SR 0001 and west of SR 0413 (S. Pine Street). Photo taken April 19, 2021.

Photo 14: Looking east towards Wetland 2 (WET-2), to the north of SR 0001 and west of SR 0413 (S. Pine Street). Photo taken April 19, 2021.

Photo 15: Looking northwest towards the TP-5 upland sample plot, located to the north of Wetland 2 (WET-2). Photo taken April 19, 2021.

Photo 16: Looking northeast along the northern side of SR 0001, in the southwestern portion of the study area. Photo taken May 4, 2021.

Photo 17: Looking northeast towards SR 2045 (Old Lincoln Highway), in the southwestern portion of the study area. Photo taken May 4, 2021.

Photo 18: Looking south (downstream) along WUS-8, north of SR 0001 and south of SR 2045 (Old Lincoln Highway) in the southwestern portion of the study area. Photo taken May 4, 2021.

Photo 19: Looking northwest towards the TP-6 sample plot within Wetland A (WET-A), located to the west of WUS-8 in the southwestern portion of the study area. Photo taken May 4, 2021.

Photo 20: Looking west towards the TP-7 upland sample plot, located west of Wetland A (WET-A) in the southwestern portion of the study area. Photo taken May 4, 2021.

Photo 21: Looking southeast along a township road between SR 0001 and SR 2045 (Old Lincoln Highway), in the southwestern portion of the study area. Photo taken May 4, 2021.

Photo 22: Looking southeast beneath the bridge carrying SR 0001 over SR 2008 (Highland Avenue), in the southwestern portion of the study area. Photo taken May 4, 2021.

Photo 23: Looking south (upstream) along WUS-7, located north of SR 0001 and east of SR 2008 (Highland Avenue). Photo taken May 4, 2021.

Photo 24: Looking northeast (downstream) along WUS-7 towards its confluence with WUS-6, to the north of SR 0001 and east of SR 2008 (Highland Avenue). Photo taken May 4, 2021.

Photo 25: Looking northwest (upstream) along WUS-6, towards the culvert crossing beneath SR 2045 (Old Lincoln Highway). Photo taken May 4, 2021.

Photo 26: Looking west (upstream) along WUS-6, from just upstream of the SR 0001 culvert crossing. Photo taken May 4, 2021.

Photo 27: Looking northeast towards the TP-8 upland sample plot located adjacent to WUS-6. Photo taken May 4, 2021.

Photo 28: Looking northeast along SR 2045 (Old Lincoln Highway), to the east of Fairhill Avenue. Photo taken May 4, 2021.

Photo 29: Looking southeast within woodlands located between SR 0001 and SR 2045 (Old Lincoln Highway), to the southwest of Orchard Avenue. Photo taken May 4, 2021.

Photo 30: Looking southwest along the northern side of SR 0001, in front of the Our Lady of Grace Cemetery. Photo taken May 4, 2021.

Photo 31: Looking northeast along the northern side of SR 0001, towards its intersection with T-336 (Parkvale Avenue). Photo taken May 4, 2021.

Photo 32: Looking southwest (downstream) along WUS-4 in woodlands located north of SR 0001 in the central portion of the study area. Photo taken May 4, 2021.

Photo 33: Looking south (downstream) along WUS-4 in woodlands located north of SR 0001 in the central portion of the study area. Photo taken May 4, 2021.

Photo 34: Looking southwest (upstream) along WUS-5, located west of WUS-4 in the central portion of the study area. Photo taken May 4, 2021.

Photo 35: Looking west (upstream) along WUS-5 towards the point where it emanates from Wetland 3 (WET-3). Photo taken May 4, 2021.

Photo 36: Looking southeast (downstream) along WUS-10 towards its confluence with WUS-4. Photo taken May 4, 2021.

Photo 37: Looking northwest towards the TP-9 sample plot located within Wetland 3 (WET-3). Photo taken May 4, 2021.

Photo 38: Looking southwest towards the western side of Wetland 3 (WET-3). Photo taken May 4, 2021.

Photo 39: Looking northeast along the northern side of SR 0001, to the west of West Interchange Road. Photo taken May 4, 2021.

Photo 40: Looking east towards Wetland B (WET-B), which is located north of SR 0001 on the west side of the West Interchange Road roadway embankment. Photo taken May 4, 2021.

Photo 41: Looking southwest towards the TP-11 sample plot within Wetland B (WET-B). Photo taken May 4, 2021.

Photo 42: Looking east towards the TP-12 upland sample plot, located just north of Wetland B (WET-B). Photo taken May 4, 2021.

Photo 43: Looking west (downstream) along WUS-11, located at the northern end of West Interchange Road. Photo taken May 4, 2021.

Photo 44: Looking southeast along West Interchange Road from its intersection with West Gillam Avenue. Photo taken May 4, 2021.

Photo 45: Looking north along grass drainage located just north of SR 0001 and east of West Interchange Road. Photo taken May 4, 2021.

Photo 46: Looking north along SR 2047 (Hulmeville Avenue), to the north of SR 0001. Photo taken May 4, 2021.

Photo 47: Looking southwest towards the roadway ROW on the northern side of SR 0001, to the east of Hill Avenue. Photo taken May 4, 2021.

Photo 48: Looking northeast towards the roadway ROW on the southern side of SR 0001, in the southwestern portion of the study area. Photo taken May 11, 2021.

Photo 49: Looking northeast towards the roadway ROW and access drive on the southern side of SR 0001, in the southwestern portion of the study area. Photo taken May 11, 2021.

Photo 50: Looking north along an upland drainage located south of SR 0001, between SR 2008 (Highland Avenue) and Park Avenue. Photo taken May 11, 2021.

Photo 51: Looking east along an upland drainage located south of SR 0001, between SR 2008 (Highland Avenue) and Park Avenue. Photo taken May 11, 2021.

Photo 52: Looking northeast towards a constructed stormwater inlet located between SR 2008 (Highland Avenue) and Park Avenue, to the south of SR 0001. Photo taken May 11, 2021.

Photo 53: Looking northeast (upstream) along WUS-6, towards the outfall located south of SR 2008 (Highland Avenue). Photo taken May 11, 2021.

Photo 54: Looking southwest along SR 2008 (Highland Avenue) towards its intersection with Park Avenue. Photo taken May 11, 2021.

Photo 55: Looking northeast along the southern side of SR 0001, towards its intersection with T-824 (Timber Lane). Photo taken May 11, 2021.

Photo 56: Looking northeast along the southern side of SR 0001, towards its intersection with T-336 (Parkvale Avenue). Photo taken May 11, 2021.

Photo 57: Looking southeast along SR 2027 (Hulmeville Road), from its intersection with the southern side of SR 0001. Photo taken May 11, 2021.

Photo 58: Looking north (upstream) along WUS-4, towards the culvert crossing beneath SR 0001. Photo taken May 11, 2021.

Photo 59: Looking southwest towards the TP-13 upland sample plot located in the floodplain of WUS-4, to the south of SR 0001. Photo taken May 11, 2021.

Photo 60: Looking southwest towards the TP-14 sample plot in Wetland C (WET-C), located south of SR 0001 in the central portion of the study area. Photo taken May 11, 2021.

Photo 61: Looking northeast towards the TP-15 upland sample plot, located north of Wetland C (WET-C) and south of SR 0001. Photo taken May 11, 2021.

Photo 62: Looking northeast along the SR 0001 northbound frontage road, beneath the bridge carrying West Interchange Road over SR 0001. Photo taken May 11, 2021.



Photo 63: Looking northeast (upstream) along WUS-14, towards the culvert crossing beneath West Interchange Road. Photo taken May 11, 2021.

Photo 64: Looking southwest (downstream) along WUS-14, towards the culvert crossing beneath West Interchange Road. Photo taken May 11, 2021.

Photo 65: Looking north (upstream) along WUS-14, towards the culvert crossing beneath SR 0001. Photo taken May 11, 2021.

Photo 66: Looking southwest along the roadway ROW on the southern side of SR 0001, between SR 2047 (Hulmeville Avenue) and Hill Avenue. Photo taken May 11, 2021.

Photo 67: Looking northeast (downstream) along WUS-1, located along the southern side of SR 0001 and to the west of SR 0413 (Pine Street). Photo taken May 11, 2021.

Photo 68: Looking southwest (upstream) along WUS-1, towards its confluence with WUS-2. Photo taken May 11, 2021.

Photo 69: Looking northwest (upstream) along WUS-2, to the south of SR 0001 and west of SR 0413 (Pine Street). Photo taken May 11, 2021.

Photo 70: Looking northwest (upstream) along the southern end of WUS-2, to the south of SR 0001 and west of SR 0413 (Pine Street). Photo taken May 11, 2021.

Photo 71: Looking northwest along SR 2049 (Bellevue Avenue) from its intersection with SR 0413 (Pine Street). Photo taken May 11, 2021.

Photo 72: Looking west towards the TP-16 sample plot within Wetland D (WET-D), located east of SR 0413 (Pine Street) and south of Woods Drive. Photo taken May 19, 2021.

Photo 73: Looking northwest towards the TP-17 upland sample plot, located east of Wetland D (WET-D). Photo taken May 19, 2021.

Photo 74: Looking northwest towards the portion of WUS-2 located east of SR 0413 (Pine Street) and south of Woods Drive. Photo taken May 19, 2021.

Photo 75: Looking northwest towards maintained area located east of SR 0413 (Pine Street) and north of Woods Drive. Photo taken May 19, 2021.

Photo 76: Looking southwest along the roadway ROW fence located south of SR 0001 and east of SR 0413 (Pine Street). Photo taken May 19, 2021.

Photo 77: Looking northwest (upstream) along WUS-9 towards the culvert crossing beneath SR 0001. Photo taken May 19, 2021.

Photo 78: Looking north (upstream) along WUS-15, on the southern side of SR 0001 and near the northeastern end of the study area. Photo taken May 19, 2021.

Photo 79: Looking southeast (downstream) along WUS-15, on the southern side of SR 0001 and near the northeastern end of the study area. Photo taken May 19, 2021.

Photo 80: Looking southeast (downstream) along WUS-6, to the south of SR 2008 (Highland Avenue). Photo taken January 11, 2022.

Photo 81: Looking northeast (downstream) along WUS-2, located east of SR 0413 (Pine Street) and south of Woods Drive. Photo taken January 11, 2022.

Photo 82: Looking northwest (upstream) along WUS-2, towards a stormwater pipe outfall that drains into the watercourse. Photo taken January 11, 2022.

Photo 83: Looking northwest (upstream) along WUS-9, to the north of SR 0001. Photo taken January 11, 2022.

Photo 84: Looking southwest (downstream) along WUS-16, an ephemeral channel that drains into WUS-9 on the north side of SR 0001. Photo taken January 11, 2022.

Photo 85: Facing west (downstream) along WUS-11 toward its confluence with WUS-17 in the central portion of the study area. Photo taken November 26, 2024.

Photo 86: Facing northeast (upstream) along WUS-17 in the central portion of the study area. Photo taken November 26, 2024.

Photo 87: Facing southeast (downstream) along WUS-18 in the central portion of the study area. Photo taken November 26, 2024.

Photo 88: Facing south (downstream) along WUS-19 in the central portion of the study area. Photo taken November 26, 2024.

Photo 89: Facing northeast (upstream) along WUS-19 in the central portion of the study area. Photo taken November 26, 2024.

Photo 90: Facing northwest (upstream) along WUS-4 toward the culvert under West Highland Avenue in the central portion of the study area. Photo taken November 26, 2024.



Photo 91: Facing west (downstream) along WUS-14 in the central portion of the study area. Photo taken November 26, 2024.

Photo 92: Facing northeast (upstream) along WUS-21 in the central portion of the study area. Photo taken November 26, 2024.

Appendix E Wetland Functional Assessment Data Forms and Key

Total area of wetland <u>0.129 ac</u> Human made? <u>Alte</u>	ered I	s wetla	and part of a wildlife corridor?_	No	or a "habitat island"? No	Wetland I.D. Wetland 1 (WET-1) Latitude 40.17024° NLongitude -74.91707° W
Adjacent land use Roadways, residential, woodl	ands		Distance to nearest road	lway oi	other development 20 feet	Prepared by: CPN Date 08/10/21
Dominant wetland systems present PSS	Wetland Impact: Type Potential fillArea_unknown					
Is the wetland a separate hydraulic system?Ye How many tributaries contribute to the wetland?	Evaluation based on: Office N/A Field X Corps manual wetland delineation completed? Y_X_ N					
Function/Value	Suita	abilit N		rincij uncti		omments
▼ Groundwater Recharge/Discharge		Х				
Floodflow Alteration	х		3,4,5,6,8,9,10,18		Wetland may retain floodwaters duri	ng high flows in WUS-3
Fish and Shellfish Habitat		Х				
Sediment/Toxicant Retention	х		1,2,4	х	Wetland helps trap/filter sediment a	nd pollutants from roadway/surface runoff
Nutrient Removal	х		3,4,7,8,9,10	х	Dense vegetation filters nutrients from	om upslope runoff
→ Production Export		Х				
Sediment/Shoreline Stabilization		Х				
❤️ Wildlife Habitat	х		13,15		Minor wildlife habitat value exhibited	d in this wetland
Recreation		х				
Educational/Scientific Value		х				
★ Uniqueness/Heritage		Х				
Wisual Quality/Aesthetics		Х				
ES Endangered Species Habitat		х				
Other		×				

Notes: Small PSS wetland (open-ended)

Total area of wetland <u>0.302 ac</u> Human made? <u>Alte</u>	ered I	s wetla	and part of a wildlife corridor?_	No	or a "habitat island"? No	Wetland I.D. Wetland 2 (WET-2) Latitude 40.17097° NLongitude -74.91566° W
Adjacent land use Roadways, residential, woodle	ands		Distance to nearest road	lway or	other development 15 feet	Prepared by: CPN Date 08/10/21
Dominant wetland systems present_PFO/PEM Contiguous undeveloped buffer zone present No						Wetland Impact: Type Potential fill Area unknown
Is the wetland a separate hydraulic system? Ye How many tributaries contribute to the wetland?		_	ot, where does the wetland lie in Wildlife & vegetation diversity.			Evaluation based on: Office N/A Field X
Function/Value	Suita	abilit	v Rationale I	Princi	pal	Corps manual wetland delineation completed? Y_X_ N omments
▼ Groundwater Recharge/Discharge		х				
Floodflow Alteration	Х		3,4,5,6,7,8,9,10,15,18	Х	Wetland may retain excessive runof	f and/or rainwater
Fish and Shellfish Habitat		х				
Sediment/Toxicant Retention	Х		1,2,4,5,9	Х	Wetland helps trap/filter sediment a	nd pollutants from roadway/surface runoff
Nutrient Removal	Х		3,4,5,7,8,9,10,11	X	Dense vegetation filters nutrients fr	om upslope runoff
Production Export		Х				
Sediment/Shoreline Stabilization		Х				
❤ Wildlife Habitat	Х		13,15,18		Moderate wildlife habitat value exhi ponded water	bited due to potential for seasonally
A Recreation		Х				
Educational/Scientific Value		Х				
★ Uniqueness/Heritage		Х				
Visual Quality/Aesthetics		х				
ES Endangered Species Habitat		х				
Other		x				

 $Notes: \quad \text{Small PFO/PEM wetland that exhibits ability to retain ponded water}$

Total area of wetland <u>0.188 ac</u> Human made? <u>No</u>	I	wetla	and part of a wildlife corridor?	_No	_ or a "habitat island"? <u>No</u>	Wetland I.D. Wetland 3 (WET-3) Latitude 40.16602° NLongitude -74.92581° W
Adjacent land use Roadways, residential, woodla	ands		Distance to nearest ro	adway or	other development 20 feet	Prepared by: CPN Date 08/10/21
Dominant wetland systems present_PFO			Contiguous undevelo	-		Wetland Impact: Type Potential fillArea_unknown
Is the wetland a separate hydraulic system?No How many tributaries contribute to the wetland?	2		ot, where does the wetland lie Wildlife & vegetation diversit	ty/abunda	ince (see attached list)	Evaluation based on: Office N/A Field X Corps manual wetland delineation completed? Y_X_ N
Function/Value	Suita Y	bilit N	y Rationale (Reference #)*	Princip Functi		omments
▼ Groundwater Recharge/Discharge	х		13,15		Multiple groundwater seep discharg	es evident in this wetland
Floodflow Alteration	х		3,4,5,6,7,8,9,10,13,18	Х	Wetland may retain floodwaters fron	n adjacent streams and/or heavy rainfall
Fish and Shellfish Habitat		Х				
Sediment/Toxicant Retention	Х		1,2,4,9,10,14,16	х	Wetland helps trap/filter sediment a	nd pollutants from roadway/surface runoff
Mutrient Removal	х		3,4,7,8,9,10,11,12,13		Dense vegetation filters nutrients from	om upslope runoff
Production Export	х		2,4,5,7,8,10		Wetland provides wildlife food produ	uction, and nutrient export into streams is
Sediment/Shoreline Stabilization		Х				
─ Wildlife Habitat	х		6,8,11,13,15,18	х	Wetland provides potential habitat f	or variety of wildlife
A Recreation		х				
Educational/Scientific Value		х				
★ Uniqueness/Heritage		х				
Visual Quality/Aesthetics		х				
ES Endangered Species Habitat		х				
Other		Х				

Notes: Large open-ended PFO wetland

Total area of wetland 0.005 ac Human made? Alte	ered I	s wetla	and part of a wildlife corridor?_	No	or a "habitat island"? No	Wetland I.D. Wetland A (WET-A) Latitude 40.154850 NLongitude -74.945800 W
Adjacent land use Roadways, residential, woodle	ands		Distance to nearest road	lway o	r other development 45 feet	Prepared by: CPN Date 08/10/21
Dominant wetland systems present PEM Contiguous undeveloped buffer zone present No						Wetland Impact: Type Potential fill Area unknown
Is the wetland a separate hydraulic system?Normany tributaries contribute to the wetland?						Evaluation based on: Office N/A Field X Corps manual wetland delineation
Function/Value		abilit N		rinci uncti	•	completed? Y_X_ N omments
▼ Groundwater Recharge/Discharge		x				
Floodflow Alteration	х		3,4,5,8,9,10,13		Wetland may retain floodwaters dur	ing high flows in WUS-8
Fish and Shellfish Habitat		Х				
Sediment/Toxicant Retention	Х		1,2,4,10	х	Wetland helps trap/filter sediment a	and pollutants from roadway/surface runoff
Nutrient Removal	х		3,4,7,13		Minor nutrient filtration occurs in thi	s wetland (sparse vegetation)
Production Export		Х				
Sediment/Shoreline Stabilization		Х				
❤ Wildlife Habitat	х		13,15		Minor wildlife habitat value exhibite	d in this wetland
A Recreation		Х				
Educational/Scientific Value		Х				
★ Uniqueness/Heritage		Х				
Visual Quality/Aesthetics		Х				
ES Endangered Species Habitat		Х				
Other		Х				

Notes: Very Small PEM wetland embedded in woodlands; discharges to WUS-8

Total area of wetland 0.007 ac Human made? Alto	ered I	wetl	and part of a wildlife corridor?_	No	or a "habitat island"? No	Wetland I.D. Wetland B (WET-B) Latitude 40.167360 NLongitude -74.924060 W
Adjacent land use Roadways, residential, woodle	ands		Distance to nearest roa	dway o	r other development 30 feet	Prepared by: CPN Date 08/10/21
Dominant wetland systems present_PEM	Wetland Impact: Type Potential fill Area unknown					
Is the wetland a separate hydraulic system?Ye	Evaluation based on:					
How many tributaries contribute to the wetland?	none	<u> </u>	Wildlife & vegetation diversity	/abunda	ance (see attached list)	Office N/A Field X Corps manual wetland delineation
Function/Value	Suita Y	abilit N		Princi Functi		completed? Y_X_ N omments
▼ Groundwater Recharge/Discharge		х				
Floodflow Alteration		Х				
Fish and Shellfish Habitat		Х				
Sediment/Toxicant Retention	х		1,2,4,5	Х	Wetland helps trap/filter sediment a	and pollutants from roadway/surface runoff
Nutrient Removal	х		3,4,7,8,9,10		Dense vegetation filters nutrients fr	om upslope runoff
→ Production Export		х				
Sediment/Shoreline Stabilization		х				
❤️ Wildlife Habitat	х		13		Minor wildlife habitat value exhibite	d in this wetland
Recreation		х				
Educational/Scientific Value		х				
★ Uniqueness/Heritage		Х				
Wisual Quality/Aesthetics		х				
ES Endangered Species Habitat		х				
Other		×				

Notes: Small PEM wetland (open-ended) that is fed by stormwater runoff beneath West Interchange Road.

Total area of wetland <u>0.027 ac</u> Human made? <u>No</u> Adjacent land use <u>Roadways, residential, woodla</u> Dominant wetland systems present <u>PSS</u> Is the wetland a separate hydraulic system? Ye	ands		and part of a wildlife corridor? Distance to nearest roadContiguous undevelope tot, where does the wetland lie in	lway oi	r other development 20 feet er zone present No	Wetland I.D. Wetland C (WET-C) Latitude 40.16533° NLongitude -74.92574° W Prepared by: CPN Date 08/10/21 Wetland Impact: Type Potential fill Area unknown Evaluation based on:
How many tributaries contribute to the wetland?	none	e	Wildlife & vegetation diversity/			Office N/A Field X Corps manual wetland delineation completed? Y X N
Function/Value	Suita Y	abilit N		Princij Functi		omments
▼ Groundwater Recharge/Discharge	x		13,15		Multiple groundwater seep discharg	es evident in this wetland
Floodflow Alteration	х		4,5,6,8,9		Wetland may retain surface runoff a	nd/or rainfall
Fish and Shellfish Habitat		Х				
Sediment/Toxicant Retention	Х		1,2,4,9	х	Wetland helps trap/filter sediment a	nd pollutants from roadway/surface runoff
Nutrient Removal	х		3,4,7,8,9,10		Dense vegetation filters nutrients fro	om upslope runoff
Production Export		Х				
Sediment/Shoreline Stabilization		Х				
❤️ Wildlife Habitat	х		13,15		Moderate wildlife habitat value exhi	bited in this wetland
Recreation		Х				
Educational/Scientific Value		х				
★ Uniqueness/Heritage		Х				
Wisual Quality/Aesthetics		Х				
ES Endangered Species Habitat		Х				
Other		х				

Notes: PSS wetland (open-ended) fed by groundwater discharge

Total area of wetland <u>0.133 ac</u> Human made? <u>No</u>	I	s wetla	and part of a wildlife corridor?_	No	or a "habitat island"? No	Wetland I.D. Wetland D (WET-D) Latitude 40.16920 NLongitude -74.91352 W
Adjacent land use Roadways, residential/comme	ercial,	woodl	ands _ Distance to nearest road	lway o	r other development15 feet	Prepared by: CPN Date 08/10/21
Dominant wetland systems present_PEM			Contiguous undevelop	ed buff	er zone present No	Wetland Impact: Type Potential fill Area unknown
Is the wetland a separate hydraulic system? Ye	es	_ If n	ot, where does the wetland lie in	the dr	ainage basin?N/A	Evaluation based on:
How many tributaries contribute to the wetland?	none	e	Wildlife & vegetation diversity	abunda	ance (see attached list)	Office N/A Field X Corps manual wetland delineation completed? Y_X_ N_
Function/Value	Suita Y	abilit N		Princi uncti		omments
▼ Groundwater Recharge/Discharge		Х				
Floodflow Alteration	х		3,4,5,6,8,9,18		Wetland may retain surface/roadwa	y runoff and/or rainfall
Fish and Shellfish Habitat		Х				
Sediment/Toxicant Retention	х		1,2,4	х	Wetland helps trap/filter sediment a	nd pollutants from roadway/surface runoff
Nutrient Removal	х		3,4,7,8,9,10		Dense vegetation filters nutrients fr	om upslope runoff
→ Production Export		Х				
Sediment/Shoreline Stabilization		Х				
❤️ Wildlife Habitat	х		13,15		Minor wildlife habitat value exhibite	d in this wetland
Recreation		х				
Educational/Scientific Value		х				
★ Uniqueness/Heritage		Х				
Wisual Quality/Aesthetics		Х				
ES Endangered Species Habitat		Х				
Other		×				

Notes: PEM wetland located between roadway embankment and maintained (mowed) lawn

Total area of wetland 0.004 ac Human made? Alto	ered I	s wetl:	and part of a wildlife corridor?_	No	or a "habitat island"? No	Wetland I.D. Wetland E (WET-E) Latitude 40.171830 NLongitude -74.914800 W
Adjacent land use Roadways, residential, woodl	ands, ı	mowe	d Distance to nearest road	lway o	r other development 75 feet	Prepared by: CPN Date 08/10/21
Dominant wetland systems present PEM			Contiguous undevelop	ed buff	er zone present No	Wetland Impact: Type Potential fillArea_unknown
Is the wetland a separate hydraulic system?Ye How many tributaries contribute to the wetland?	none		ot, where does the wetland lie in Wildlife & vegetation diversity.			Evaluation based on: Office N/A Field X Corps manual wetland delineation completed? Y_X_ N_
Function/Value	Suita Y	abilit N		Princi Functi		omments
▼ Groundwater Recharge/Discharge		Х				
Floodflow Alteration		Х				
Fish and Shellfish Habitat		Х				
Sediment/Toxicant Retention	х		1,2,4	Х	Wetland helps trap/filter sediment a	nd pollutants from roadway/surface runoff
Nutrient Removal	х		3,4,7,8,9,10		Dense vegetation filters nutrients fr	om upslope runoff
→ Production Export		Х				
Sediment/Shoreline Stabilization		Х				
❤️ Wildlife Habitat	х		13		Minor wildlife habitat value exhibite	d in this wetland
A Recreation		Х				
Educational/Scientific Value		Х				
★ Uniqueness/Heritage		Х				
Wisual Quality/Aesthetics		Х				
ES Endangered Species Habitat		Х				
Other		×				

Notes: Very small PEM wetland between roadway embankment and maintained (mowed) area

Appendix A

Wetland evaluation supporting documentation; Reproducible forms.

Below is an example list of considerations that was used for a New Hampshire highway project. Considerations are flexible, based on best professional judgment and interdisciplinary team consensus. This example provides a comprehensive base, however, and may only need slight modifications for use in other projects.

GROUNDWATER RECHARGE/DISCHARGE— This function considers the potential for a wetland to serve as a groundwater recharge and/or discharge area. It refers to the fundamental interaction between wetlands and aquifers, regardless of the size or importance of either.

CONSIDERATIONS/QUALIFIERS

- 1. Public or private wells occur downstream of the wetland.
- 2. Potential exists for public or private wells downstream of the wetland.
- 3. Wetland is underlain by stratified drift.
- 4. Gravel or sandy soils present in or adjacent to the wetland.
- 5. Fragipan does not occur in the wetland.
- 6. Fragipan, impervious soils, or bedrock does occur in the wetland.
- 7. Wetland is associated with a perennial or intermittent watercourse.
- 8. Signs of groundwater recharge are present or piezometer data demonstrates recharge.
- Wetland is associated with a watercourse but lacks a defined outlet or contains a constricted outlet.
- 10. Wetland contains only an outlet, no inlet.
- 11. Groundwater quality of stratified drift aquifer within or downstream of wetland meets drinking water standards.
- 12. Quality of water associated with the wetland is high.
- 13. Signs of groundwater discharge are present (e.g., springs).
- 14. Water temperature suggests it is a discharge site.
- 15. Wetland shows signs of variable water levels.
- 16. Piezometer data demonstrates discharge.
- 17. Other

FLOODFLOW ALTERATION (Storage & Desynchronization) — This function considers the effectiveness of the wetland in reducing flood damage by water retention for prolonged periods following precipitation events and the gradual release of floodwaters. It adds to the stability of the wetland ecological system or its buffering characteristics and provides social or economic value relative to erosion and/or flood prone areas.

CONSIDERATIONS/QUALIFIERS

- 1. Area of this wetland is large relative to its watershed.
- 2. Wetland occurs in the upper portions of its watershed.
- 3. Effective flood storage is small or non-existent upslope of or above the wetland.
- 4. Wetland watershed contains a high percent of impervious surfaces.
- 5. Wetland contains hydric soils which are able to absorb and detain water.
- 6. Wetland exists in a relatively flat area that has flood storage potential.
- 7. Wetland has an intermittent outlet, ponded water, or signs are present of variable water level.
- 8. During flood events, this wetland can retain higher volumes of water than under normal or average rainfall conditions.
- 9. Wetland receives and retains overland or sheet flow runoff from surrounding uplands.
- 10. In the event of a large storm, this wetland may receive and detain excessive flood water from a nearby watercourse.
- 11. Valuable properties, structures, or resources are located in or near the floodplain downstream from the wetland.
- 12. The watershed has a history of economic loss due to flooding.
- 13. This wetland is associated with one or more watercourses.
- 14. This wetland watercourse is sinuous or diffuse.
- 15. This wetland outlet is constricted.
- 16. Channel flow velocity is affected by this wetland.
- 17. Land uses downstream are protected by this wetland.
- 18. This wetland contains a high density of vegetation.
- 19. Other

FISH AND SHELLFISH HABITAT (FRESHWATER) — This function considers the effectiveness of seasonal or permanent watercourses associated with the wetland in question for fish and shellfish habitat.

CONSIDERATIONS/QUALIFIERS

- 1. Forest land dominant in the watershed above this wetland.
- 2. Abundance of cover objects present.

STOP HERE IF THIS WETLAND IS NOT ASSOCIATED WITH A WATERCOURSE


- 3. Size of this wetland is able to support large fish/shellfish populations.
- 4. Wetland is part of a larger, contiguous watercourse.
- 5. Wetland has sufficient size and depth in open water areas so as not to freeze solid and retain some open water during winter.
- 6. Stream width (bank to bank) is more than 50 feet.
- 7. Quality of the watercourse associated with this wetland is able to support healthy fish/shellfish populations.
- 8. Streamside vegetation provides shade for the watercourse.
- 9. Spawning areas are present (submerged vegetation or gravel beds).
- 10. Food is available to fish/shellfish populations within this wetland.
- 11. Barrier(s) to anadromous fish (such as dams, including beaver dams, waterfalls, road crossing) are absent from the stream reach associated with this wetland.
- 12. Evidence of fish is present.
- 13. Wetland is stocked with fish.
- 14. The watercourse is persistent.
- 15. Man-made streams are absent.
- 16. Water velocities are not too excessive for fish usage.
- 17. Defined stream channel is present.
- 18. Other

Although the above example refers to freshwater wetlands, it can also be adapted for marine ecosystems. The following is an example provided by the National Marine Fisheries Service (NMFS) of an adaptation for the fish and shellfish function.

FISH AND SHELLFISH HABITAT (MARINE) — This function considers the effectiveness of wetlands, embayments, tidal flats, vegetated shallows, and other environments in supporting marine resources such as fish, shellfish, marine mammals, and sea turtles.

CONSIDERATIONS/QUALIFIERS

- 1. Special aquatic sites (tidal marsh, mud flats, eelgrass beds) are present.
- 2. Suitable spawning habitat is present at the site or in the area.
- Commercially or recreationally important species are present or suitable habitat exists.
- 4. The wetland/waterway supports prey for higher trophic level marine organisms.
- 5. The waterway provides migratory habitat for anadromous fish.
- 6. Essential fish habitat, as defined by the 1996 amendments to the Magnuson-Stevens Fishery & Conservation Act, is present (consultation with NMFS may be necessary).
- 7. Other

SEDIMENT/TOXICANT/PATHOGEN RETENTION — This function reduces or prevents degradation of water quality. It relates to the effectiveness of the wetland as a trap for sediments, toxicants, or pathogens in runoff water from surrounding uplands or upstream eroding wetland areas.

CONSIDERATIONS/QUALIFIERS

- 1. Potential sources of excess sediment are in the watershed above the wetland.
- 2. Potential or known sources of toxicants are in the watershed above the wetland.
- 3. Opportunity for sediment trapping by slow moving water or deepwater habitat are present in this wetland.
- 4. Fine grained mineral or organic soils are present.
- 5. Long duration water retention time is present in this wetland.
- 6. Public or private water sources occur downstream.
- 7. The wetland edge is broad and intermittently aerobic.
- 8. The wetland is known to have existed for more than 50 years.
- 9. Drainage ditches have not been constructed in the wetland.

STOP HERE IF WETLAND IS NOT ASSOCIATED WITH A WATERCOURSE.

- 10. Wetland is associated with an intermittent or perennial stream or a lake.
- 11. Channelized flows have visible velocity decreases in the wetland.
- 12. Effective floodwater storage in wetland is occurring. Areas of impounded open water are present.
- 13. No indicators of erosive forces are present. No high water velocities are present.
- 14. Diffuse water flows are present in the wetland.
- 15. Wetland has a high degree of water and vegetation interspersion.
- 16. Dense vegetation provides opportunity for sediment trapping and/or signs of sediment accumulation by dense vegetation is present.
- 17. Other

NUTRIENT REMOVAL/RETENTION/TRANSFORMATION — This function considers the effectiveness of the wetland as a trap for nutrients in runoff water from surrounding uplands or contiguous wetlands and the ability of the wetland to process these nutrients into other forms or trophic levels. One aspect of this function is to prevent ill effects of nutrients entering aquifers or surface waters such as ponds, lakes, streams, rivers, or estuaries.

- 1. Wetland is large relative to the size of its watershed.
- 2. Deep water or open water habitat exists.
- 3. Overall potential for sediment trapping exists in the wetland.

- 4. Potential sources of excess nutrients are present in the watershed above the wetland.
- 5. Wetland saturated for most of the season. Ponded water is present in the wetland.
- 6. Deep organic/sediment deposits are present.
- 7. Slowly drained fine grained mineral or organic soils are present.
- 8. Dense vegetation is present.
- 9. Emergent vegetation and/or dense woody stems are dominant.
- 10. Opportunity for nutrient attenuation exists.
- 11. Vegetation diversity/abundance sufficient to utilize nutrients.

STOP HERE IF WETLAND IS NOT ASSOCIATED WITH A WATERCOURSE.

- 12. Waterflow through this wetland is diffuse.
- 13. Water retention/detention time in this wetland is increased by constricted outlet or thick vegetation.
- 14. Water moves slowly through this wetland.
- 15. Other

PRODUCTION EXPORT (Nutrient) — This function evaluates the effectiveness of the wetland to produce food or usable products for humans or other living organisms.

CONSIDERATIONS/QUALIFIERS

- 1. Wildlife food sources grow within this wetland.
- 2. Detritus development is present within this wetland
- 3. Economically or commercially used products found in this wetland.
- 4. Evidence of wildlife use found within this wetland.
- 5. Higher trophic level consumers are utilizing this wetland.
- 6. Fish or shellfish develop or occur in this wetland.
- 7. High vegetation density is present.
- 8. Wetland exhibits high degree of plant community structure/species diversity.
- 9. High aquatic vegetative diversity/abundance is present.
- 10. Nutrients exported in wetland watercourses (permanent outlet present).
- 11. "Flushing" of relatively large amounts of organic plant material occurs from this wetland.
- 12. Wetland contains flowering plants that are used by nectar-gathering insects.
- 13. Indications of export are present.
- 14. High production levels occurring, however, no visible signs of export (assumes export is attenuated).
- 15. Other

SEDIMENT/SHORELINE STABILIZATION — This function considers the effectiveness of a wetland to stabilize streambanks and shorelines against erosion.

- 1. Indications of erosion or siltation are present.
- 2. Topographical gradient is present in wetland.
- 3. Potential sediment sources are present up-slope.
- 4. Potential sediment sources are present upstream.
- 5. No distinct shoreline or bank is evident between the waterbody and the wetland or upland.
- 6. A distinct step between the open waterbody or stream and the adjacent land exists (i.e., sharp bank) with dense roots throughout.
- 7. Wide wetland (>10') borders watercourse, lake, or pond.
- 8. High flow velocities in the wetland.
- 9. The watershed is of sufficient size to produce channelized flow.
- 10. Open water fetch is present.
- 11. Boating activity is present.
- 12. Dense vegetation is bordering watercourse, lake, or pond.
- 13. High percentage of energy-absorbing emergents and/or shrubs border a watercourse, lake, or pond.
- 14. Vegetation is comprised of large trees and shrubs that withstand major flood events or erosive incidents and stabilize the shoreline on a large scale (feet).
- 15. Vegetation is comprised of a dense resilient herbaceous layer that stabilizes sediments and the shoreline on a small scale (inches) during minor flood events or potentially erosive events.
- 16. Other

WILDLIFE HABITAT — This function considers the effectiveness of the wetland to provide habitat for various types and populations of animals typically associated with wetlands and the wetland edge. Both resident and/or migrating species must be considered. Species lists of observed and potential animals should be included in the wetland assessment report.¹

CONSIDERATIONS/QUALIFIERS

- 1. Wetland is not degraded by human activity.
- 2. Water quality of the watercourse, pond, or lake associated with this wetland meets or exceeds Class A or B standards.
- 3. Wetland is not fragmented by development.
- 4. Upland surrounding this wetland is undeveloped.
- 5. More than 40% of this wetland edge is bordered by upland wildlife habitat (e.g., brushland, woodland, active farmland, or idle land) at least 500 feet in width.
- Wetland is contiguous with other wetland systems connected by a watercourse or lake.
- 7. Wildlife overland access to other wetlands is present.
- 8. Wildlife food sources are within this wetland or are nearby.
- 9. Wetland exhibits a high degree of interspersion of vegetation classes and/or open water.
- 10. Two or more islands or inclusions of upland within the wetland are present.
- 11. Dominant wetland class includes deep or shallow marsh or wooded swamp.
- 12. More than three acres of shallow permanent open water (less than 6.6 feet deep), including streams in or adjacent to wetland, are present.
- 13. Density of the wetland vegetation is high.
- 14. Wetland exhibits a high degree of plant species diversity.
- 15. Wetland exhibits a high degree of diversity in plant community structure (e.g., tree/shrub/vine/grasses/mosses)
- 16. Plant/animal indicator species are present. (List species for project)
- 17. Animal signs observed (tracks, scats, nesting areas, etc.)
- 18. Seasonal uses vary for wildlife and wetland appears to support varied population diversity/abundance during different seasons.
- 19. Wetland contains or has potential to contain a high population of insects.
- 20. Wetland contains or has potential to contain large amphibian populations.
- 21. Wetland has a high avian utilization or its potential.
- 22. Indications of less disturbance-tolerant species are present.
- 23. Signs of wildlife habitat enhancement are present (birdhouses, nesting boxes, food sources, etc.).
- 24. Other

¹In March 1995, a rapid wildlife habitat assessment method was completed by a University of Massachusetts research team with funding and oversight provided by the New England Transportation Consortium. The method is called WEThings (wetland habitat indicators for non-game species). It produces a list of potential wetland-dependent mammal, reptile, and amphibian species that may be present in the wetland. The output is based on observable habitat characteristics documented on the field data form. This method may be used to generate the wildlife species list recommended as backup information to the wetland evaluation form and to augment the considerations. Use of this method should first be coordinated with the Corps project manager. A computer program is also available to expedite this process.

RECREATION (Consumptive and Non-Consumptive) — This value considers the suitability of the wetland and associated watercourses to provide recreational opportunities such as hiking, canoeing, boating, fishing, hunting, and other active or passive recreational activities. Consumptive opportunities consume or diminish the plants, animals, or other resources that are intrinsic to the wetland. Non-consumptive opportunities do not consume or diminish these resources of the wetland.

CONSIDERATIONS/QUALIFIERS

- 1. Wetland is part of a recreation area, park, forest, or refuge.
- 2. Fishing is available within or from the wetland.
- 3. Hunting is permitted in the wetland.
- 4. Hiking occurs or has potential to occur within the wetland.
- 5. Wetland is a valuable wildlife habitat.
- 6. The watercourse, pond, or lake associated with the wetland is unpolluted.
- 7. High visual/aesthetic quality of this potential recreation site.
- 8. Access to water is available at this potential recreation site for boating, canoeing, or fishing.
- 9. The watercourse associated with this wetland is wide and deep enough to accommodate canoeing and/or non-powered boating.
- 10. Off-road public parking available at the potential recreation site.
- 11. Accessibility and travel ease is present at this site.
- 12. The wetland is within a short drive or safe walk from highly populated public and private areas.
- 13. Other

EDUCATIONAL/SCIENTIFIC VALUE — This value considers the suitability of the wetland as a site for an "outdoor classroom" or as a location for scientific study or research.

- 1. Wetland contains or is known to contain threatened, rare, or endangered species.
- 2. Little or no disturbance is occurring in this wetland.
- 3. Potential educational site contains a diversity of wetland classes which are accessible or potentially accessible.
- 4. Potential educational site is undisturbed and natural.
- 5. Wetland is considered to be a valuable wildlife habitat.
- 6. Wetland is located within a nature preserve or wildlife management area.
- 7. Signs of wildlife habitat enhancement present (bird houses, nesting boxes, food sources, etc.).
- 8. Off-road parking at potential educational site suitable for school bus access in or near wetland.
- 9. Potential educational site is within safe walking distance or a short drive to schools.
- 10. Potential educational site is within safe walking distance to other plant communities.
- 11. Direct access to perennial stream at potential educational site is available.
- 12. Direct access to pond or lake at potential educational site is available.
- 13. No known safety hazards exist within the potential educational site.
- 14. Public access to the potential educational site is controlled.
- 15. Handicap accessibility is available.
- 16. Site is currently used for educational or scientific purposes.
- 17. Other

UNIQUENESS/HERITAGE — This value considers the effectiveness of the wetland or its associated waterbodies to provide certain special values. These may include archaeological sites, critical habitat for endangered species, its overall health and appearance, its role in the ecological system of the area, its relative importance as a typical wetland class for this geographic location. These functions are clearly valuable wetland attributes relative to aspects of public health, recreation, and habitat diversity.

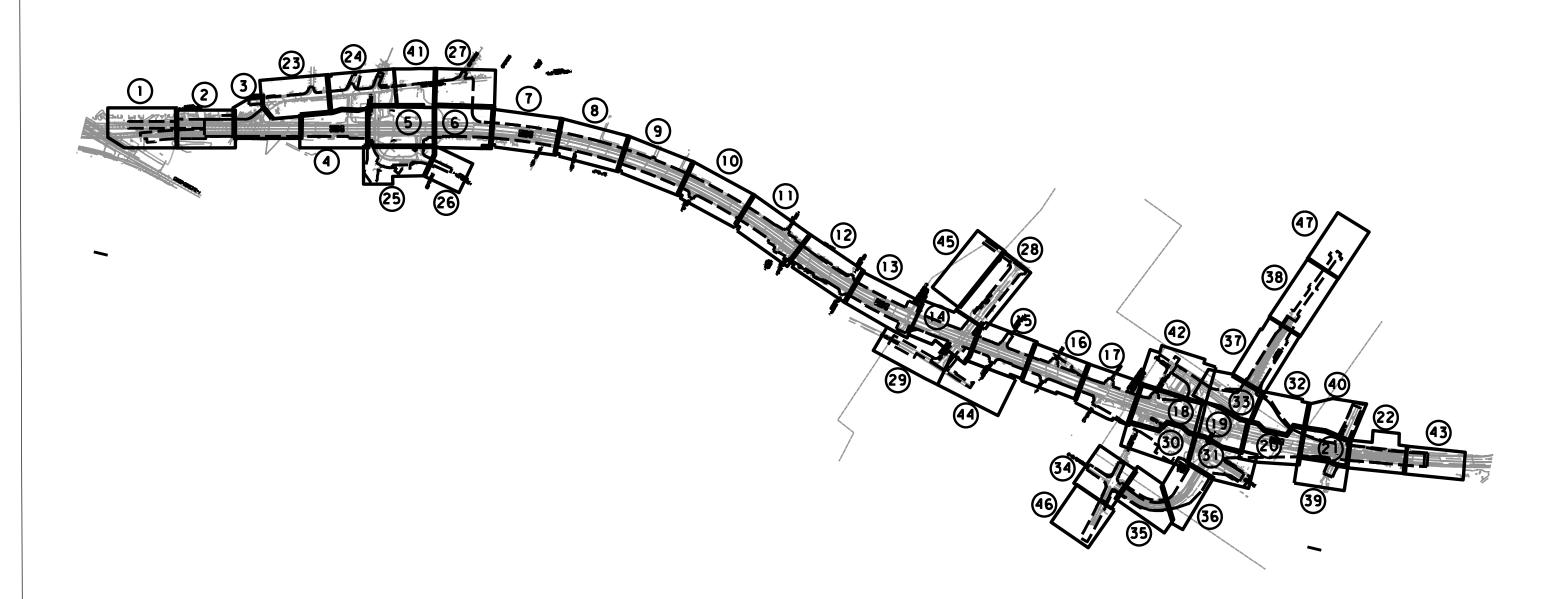
- 1. Upland surrounding wetland is primarily urban.
- 2. Upland surrounding wetland is developing rapidly.
- 3. More than 3 acres of shallow permanent open water (less than 6.6 feet deep), including streams, occur in wetlands.
- 4. Three or more wetland classes are present.
- 5. Deep and/or shallow marsh or wooded swamp dominate.
- 6. High degree of interspersion of vegetation and/or open water occur in this wetland.
- 7. Well-vegetated stream corridor (15 feet on each side of the stream) occurs in this wetland.
- 8. Potential educational site is within a short drive or a safe walk from schools.
- 9. Off-road parking at potential educational site is suitable for school buses.
- 10. No known safety hazards exist within this potential educational site.
- 11. Direct access to perennial stream or lake exists at potential educational site.
- 12. Two or more wetland classes are visible from primary viewing locations.
- 13. Low-growing wetlands (marshes, scrub-shrub, bogs, open water) are visible from primary viewing locations.
- 14. Half an acre of open water or 200 feet of stream is visible from the primary viewing locations.
- 15. Large area of wetland is dominated by flowering plants or plants that turn vibrant colors in different seasons.
- 16. General appearance of the wetland visible from primary viewing locations is unpolluted and/or undisturbed.
- 17. Overall view of the wetland is available from the surrounding upland.
- 18. Quality of the water associated with the wetland is high.
- 19. Opportunities for wildlife observations are available.
- 20. Historical buildings are found within the wetland.
- 21. Presence of pond or pond site and remains of a dam occur within the wetland.
- 22. Wetland is within 50 yards of the nearest perennial watercourse.
- 23. Visible stone or earthen foundations, berms, dams, standing structures, or associated features occur within the wetland.
- 24. Wetland contains critical habitat for a state- or federally-listed threatened or endangered species.
- 25. Wetland is known to be a study site for scientific research.
- 26. Wetland is a natural landmark or recognized by the state natural heritage inventory authority as an exemplary natural community.
- 27. Wetland has local significance because it serves several functional values.
- 28. Wetland has local significance because it has biological, geological, or other features that are locally rare or unique.
- 29. Wetland is known to contain an important archaeological site.
- 30. Wetland is hydrologically connected to a state or federally designated scenic river.
- 31. Wetland is located in an area experiencing a high wetland loss rate.
- 32. Other

VISUAL QUALITY/AESTHETICS — This value considers the visual and aesthetic quality or usefulness of the wetland.

CONSIDERATIONS/QUALIFIERS

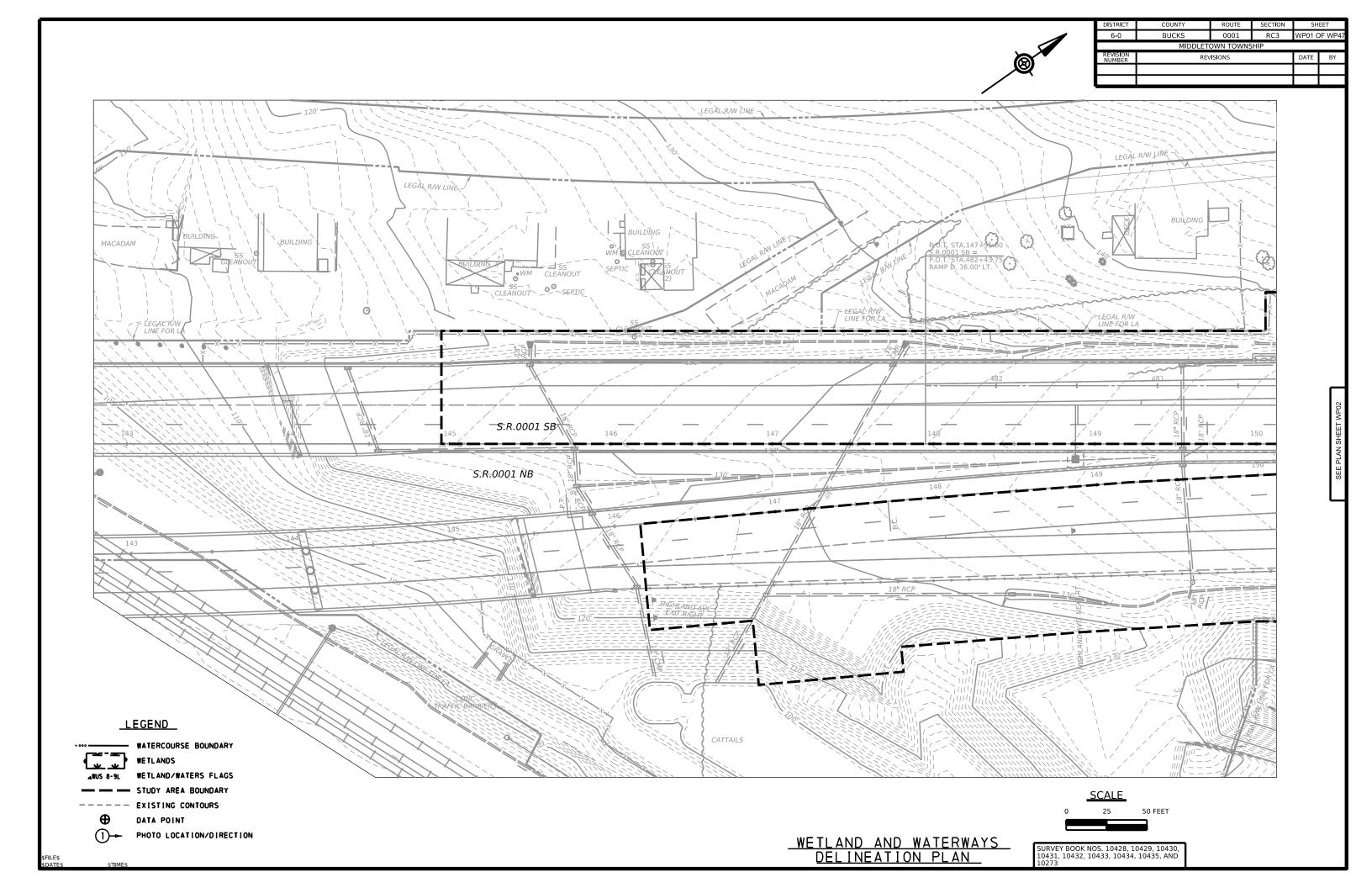
- 1. Multiple wetland classes are visible from primary viewing locations.
- 2. Emergent marsh and/or open water are visible from primary viewing locations.
- 3. A diversity of vegetative species is visible from primary viewing locations.
- 4. Wetland is dominated by flowering plants or plants that turn vibrant colors in different seasons.
- 5. Land use surrounding the wetland is undeveloped as seen from primary viewing locations.
- 6. Visible surrounding land use form contrasts with wetland.
- 7. Wetland views absent of trash, debris, and signs of disturbance.
- 8. Wetland is considered to be a valuable wildlife habitat.
- 9. Wetland is easily accessed.
- 10. Low noise level at primary viewing locations.
- 11. Unpleasant odors absent at primary viewing locations.
- 12. Relatively unobstructed sight line exists through wetland.
- 13. Other

ENDANGERED SPECIES HABITAT — This value considers the suitability of the wetland to support threatened or endangered species.

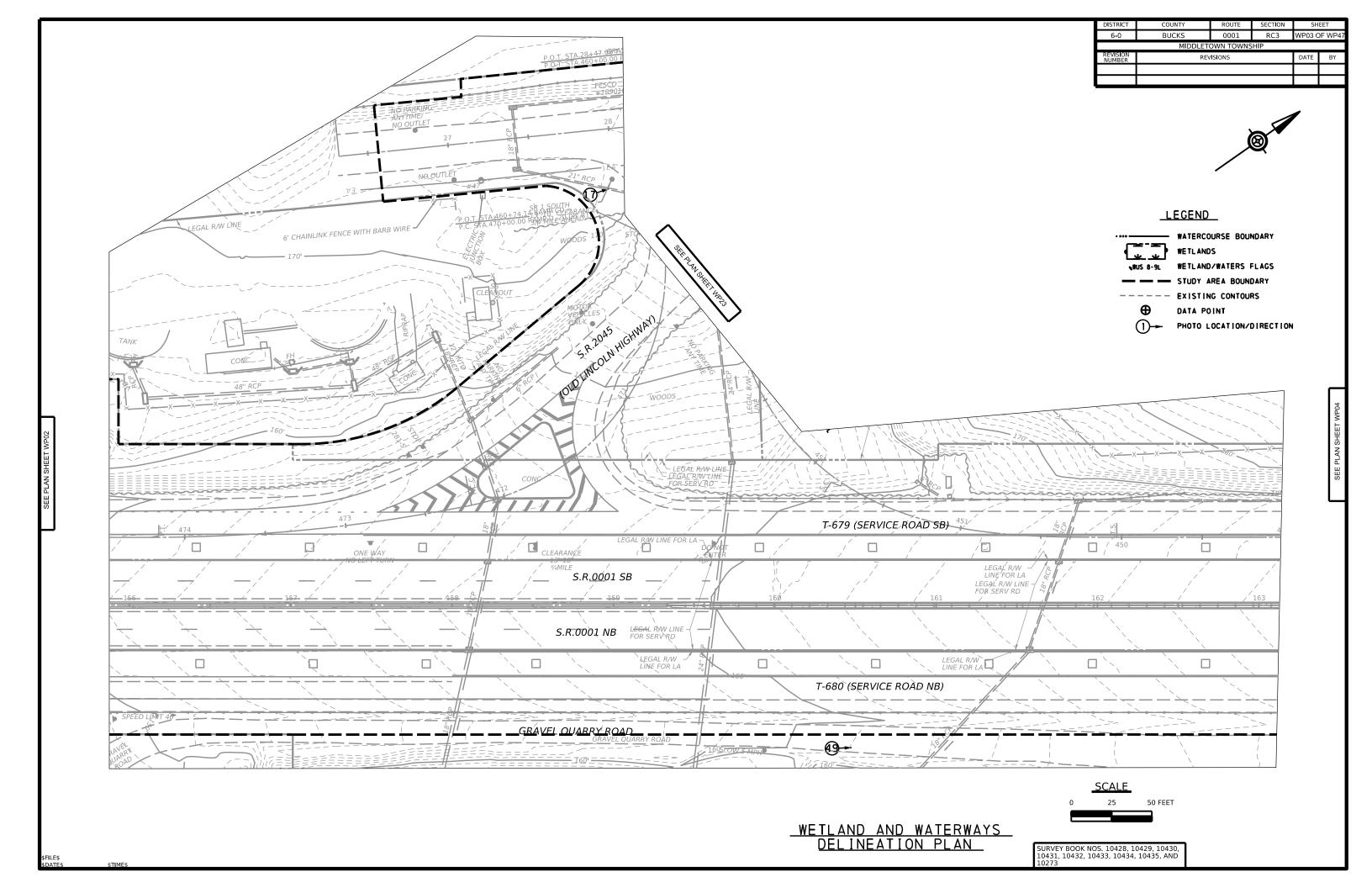

- 1. Wetland contains or is known to contain threatened or endangered species.
- 2. Wetland contains critical habitat for a state or federally listed threatened or endangered species.

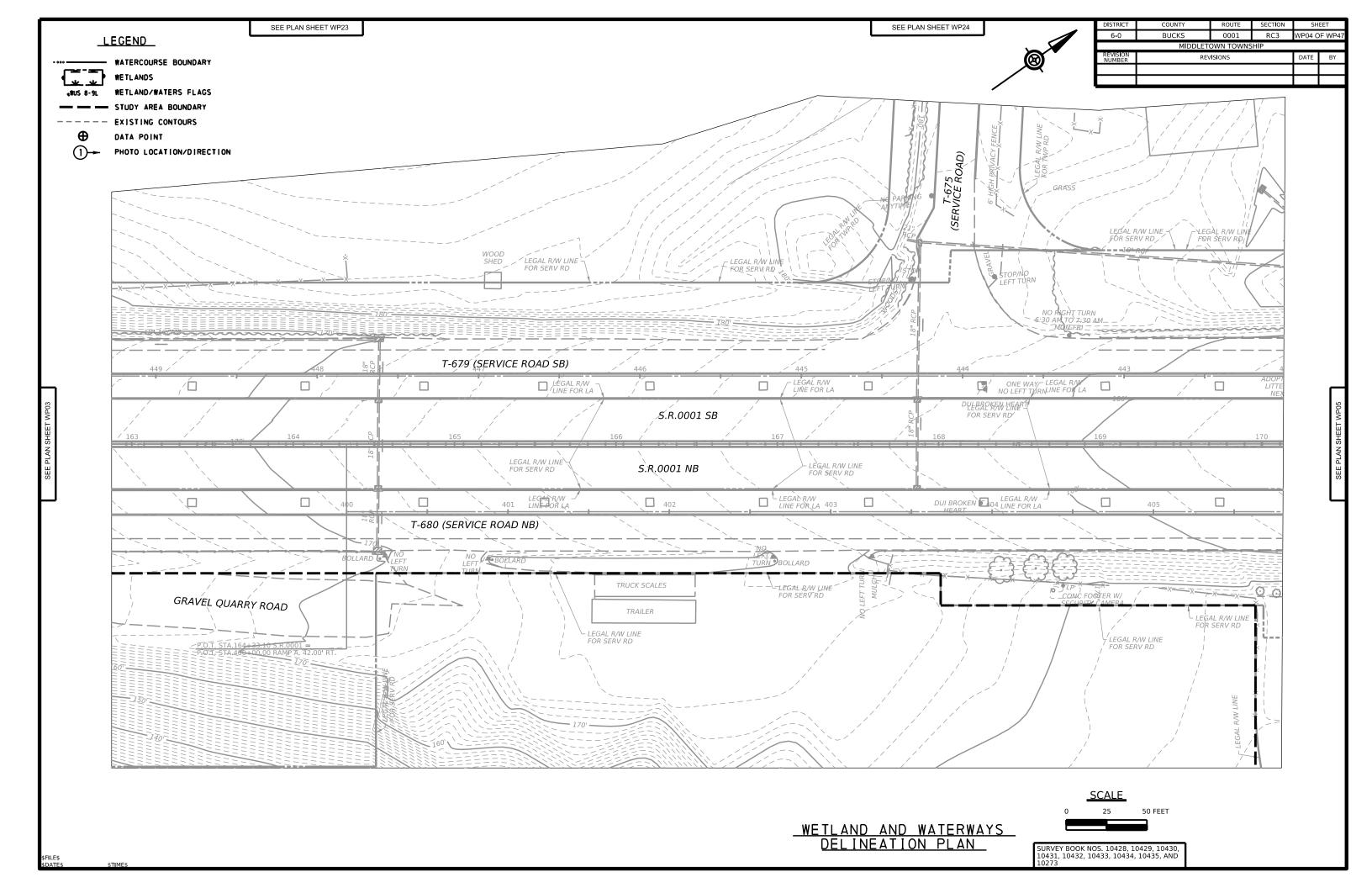
Appendix F Wetland and Waterways Delineation Plans

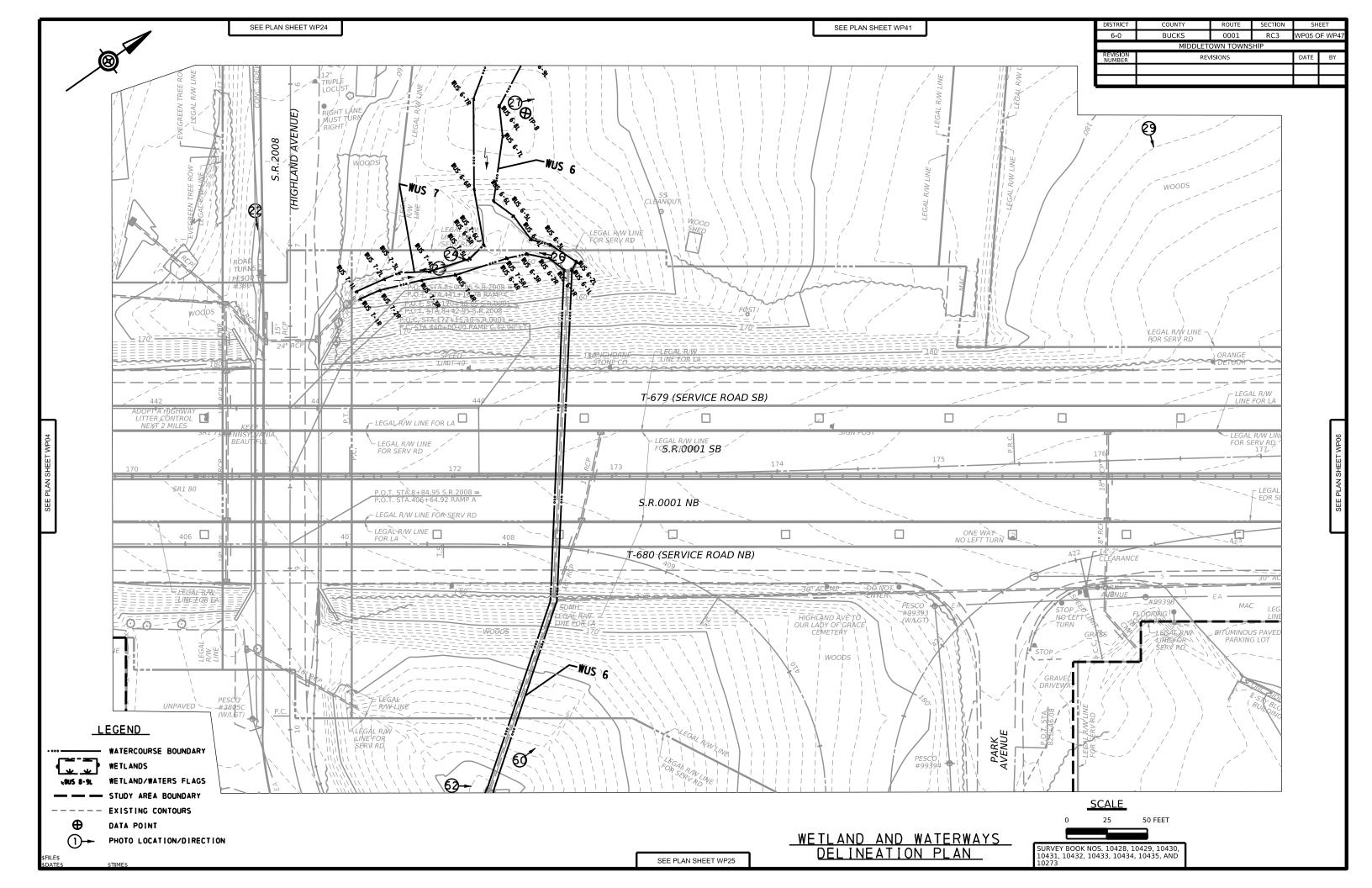
DISTRICT	COUNTY	ROUTE	SECTION	SH	EET			
6-0	BUCKS	0001	RC3	OF ·				
MIDDLETOWN TOWNSHIP								
REVISION NUMBER	REVISIONS			DATE	BY			

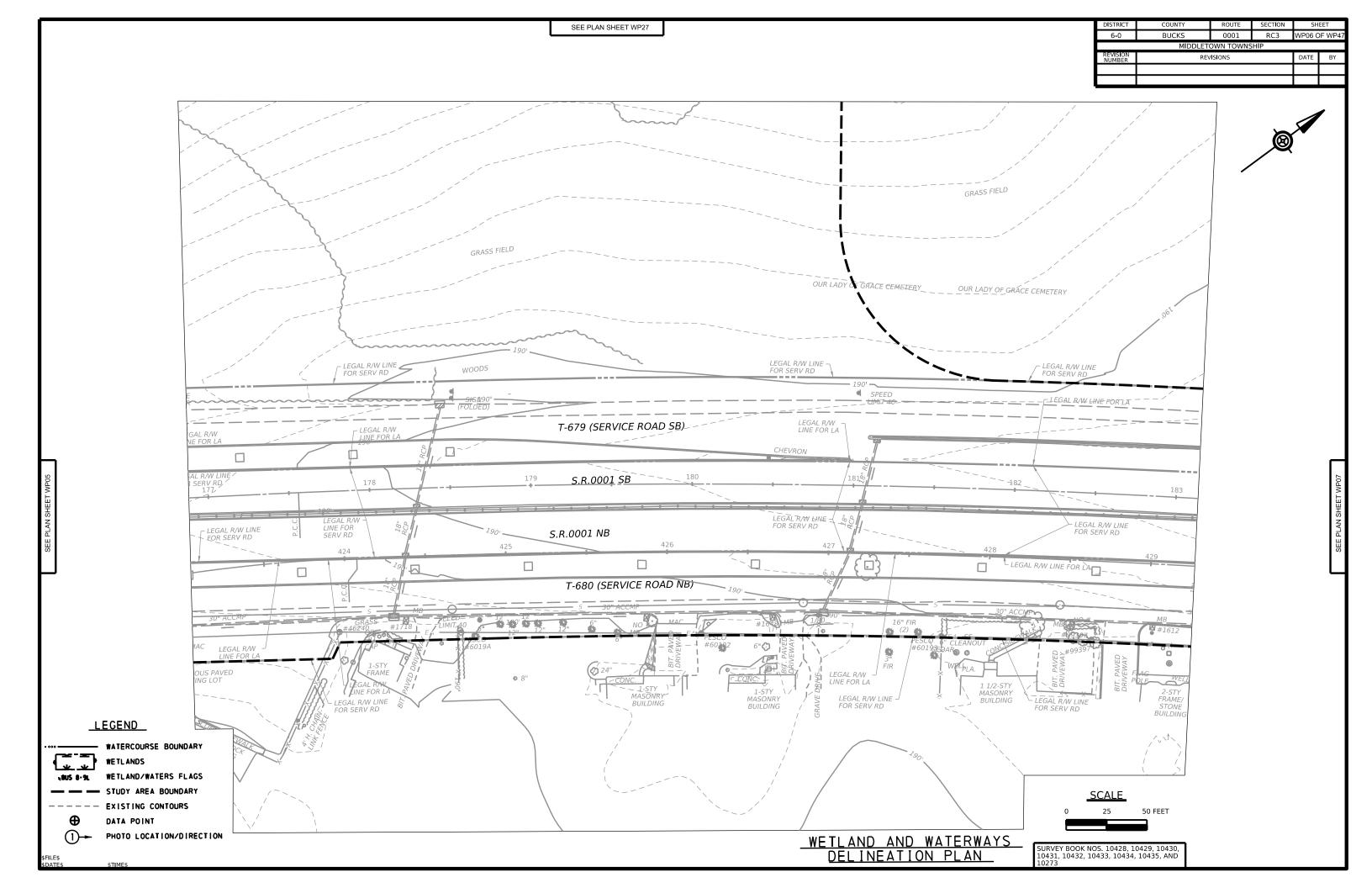


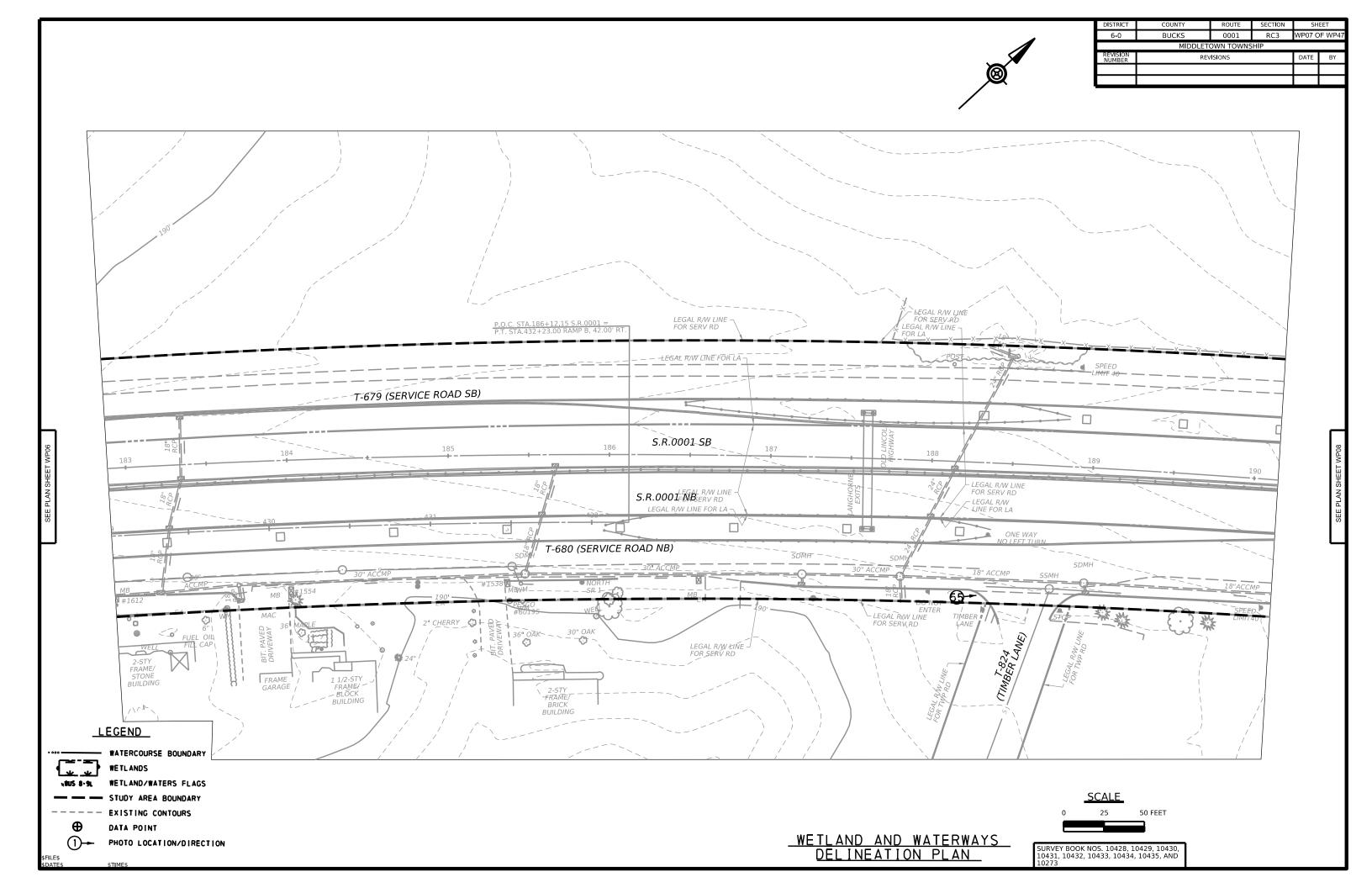
<u>LEGEND</u>

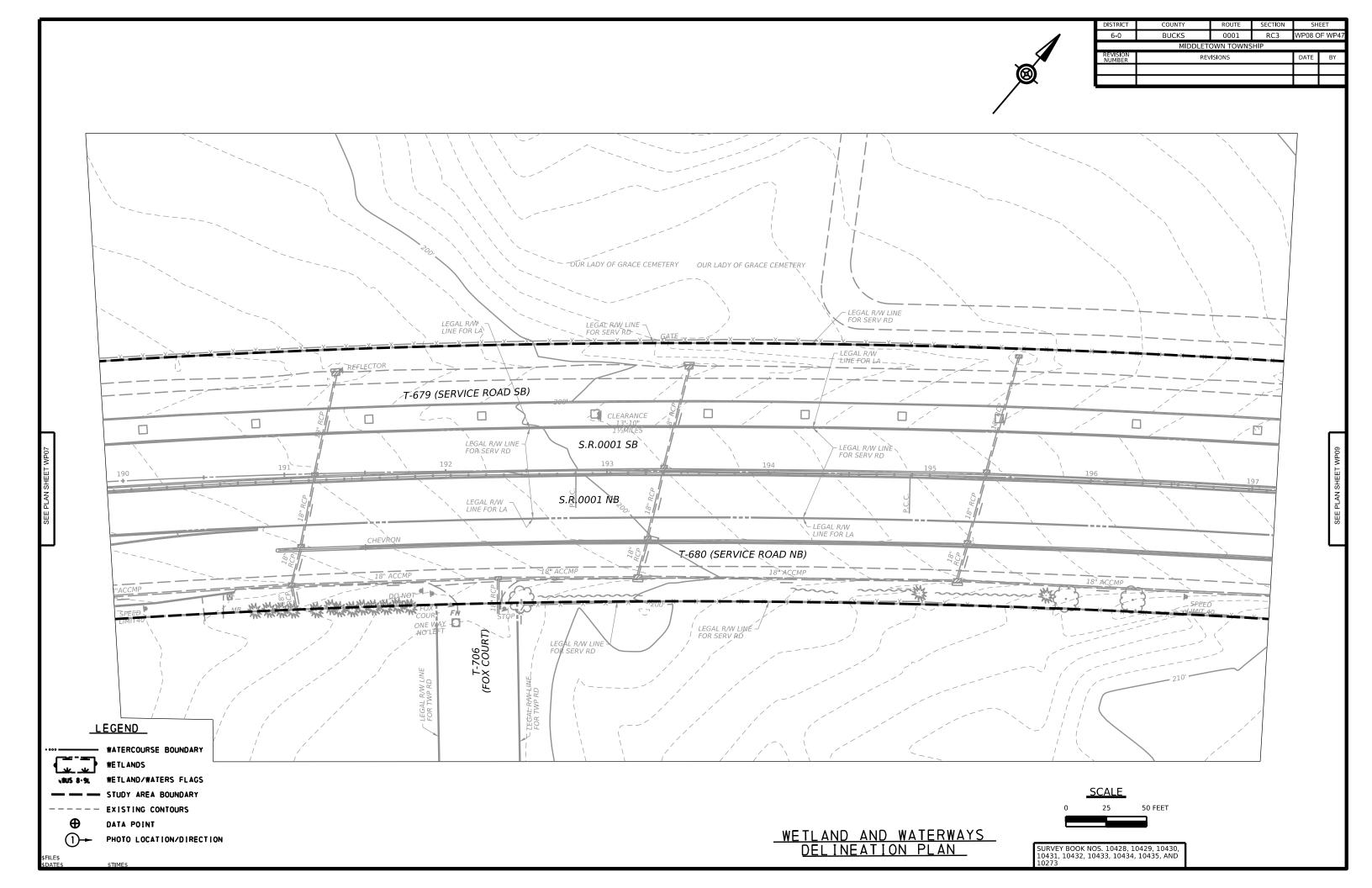

- STUDY AREA BOUNDARY

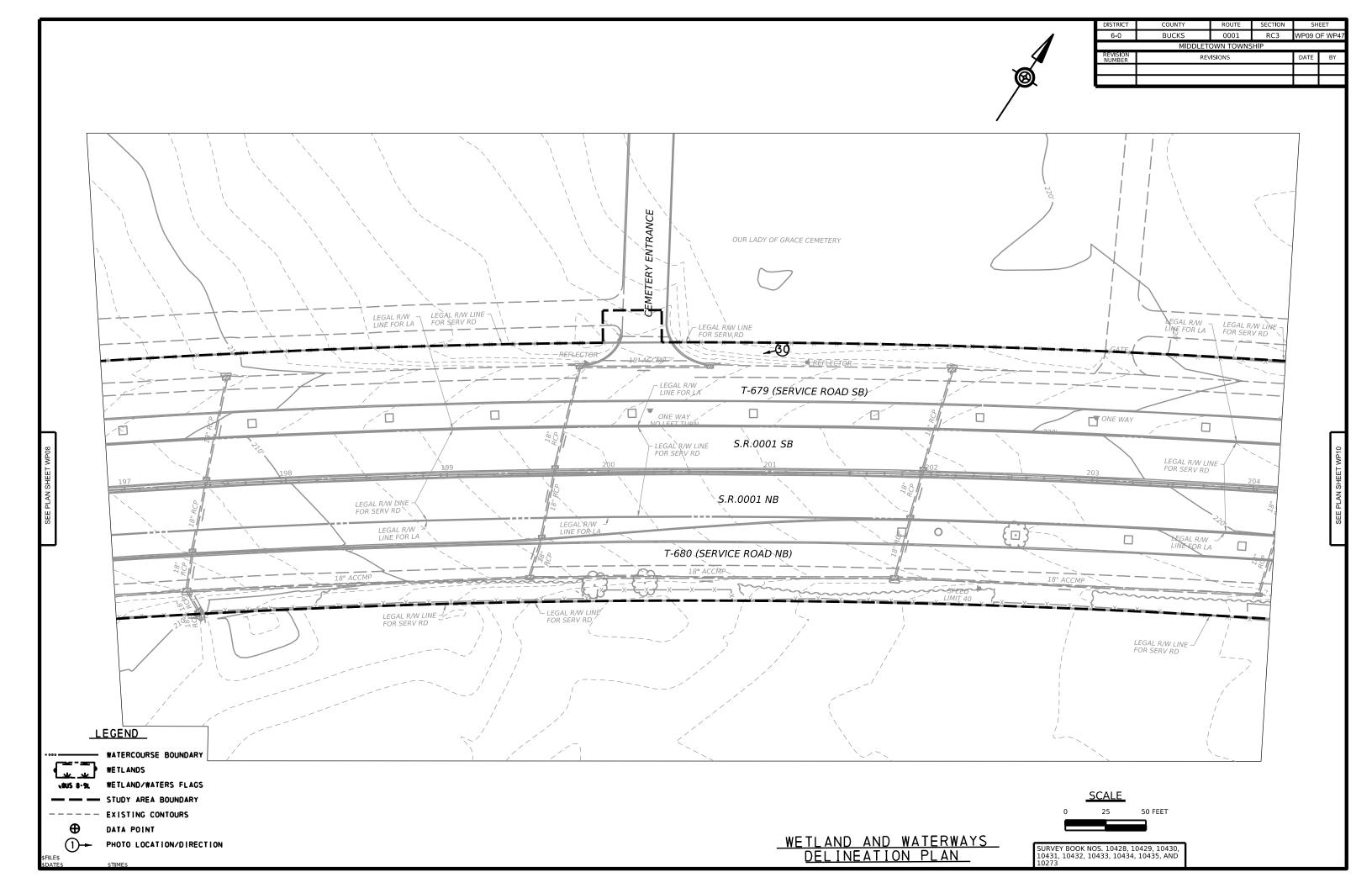

WETLAND AND WATERWAYS
DELINEATION PLAN
INDEX SHEET

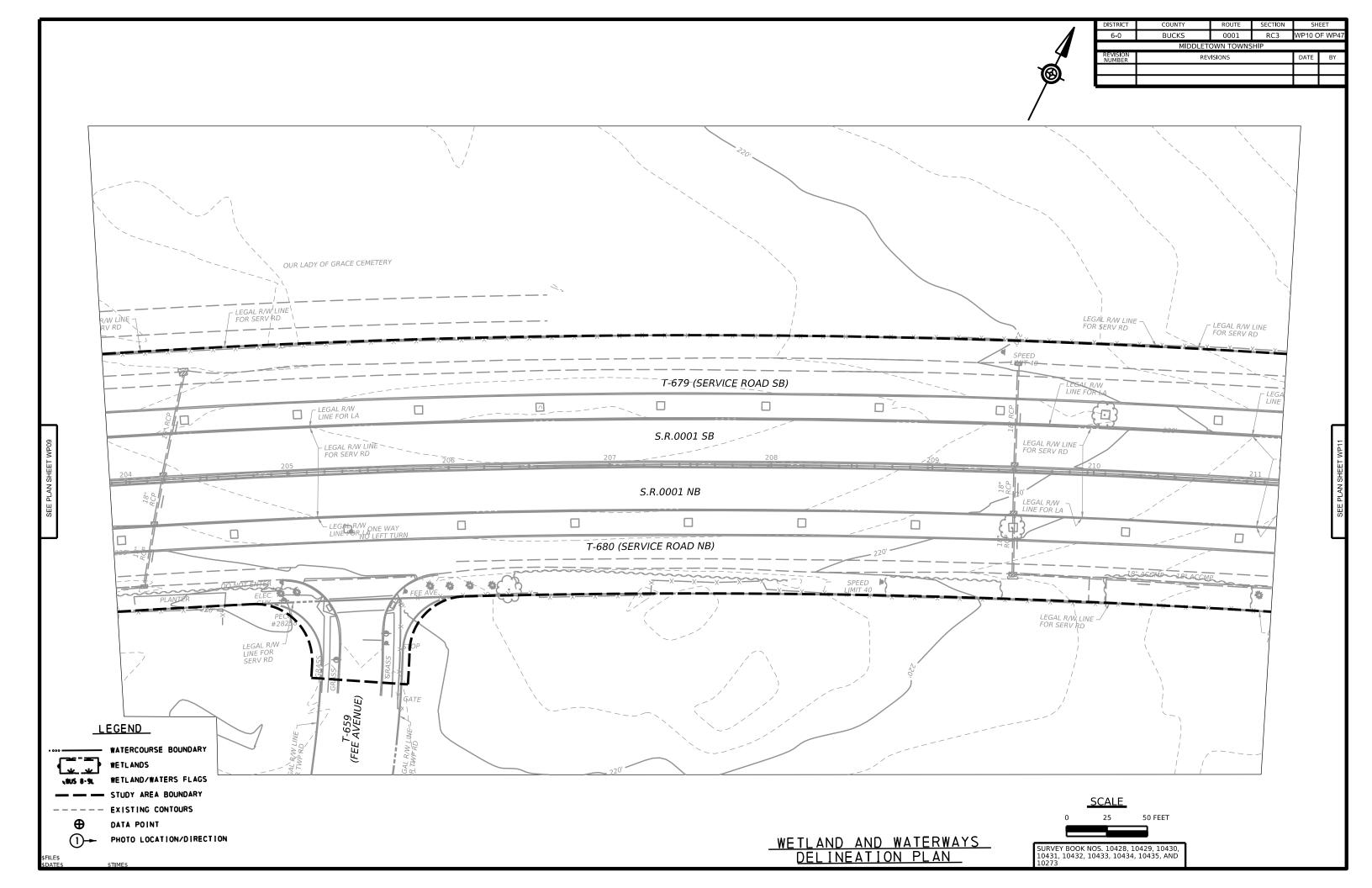


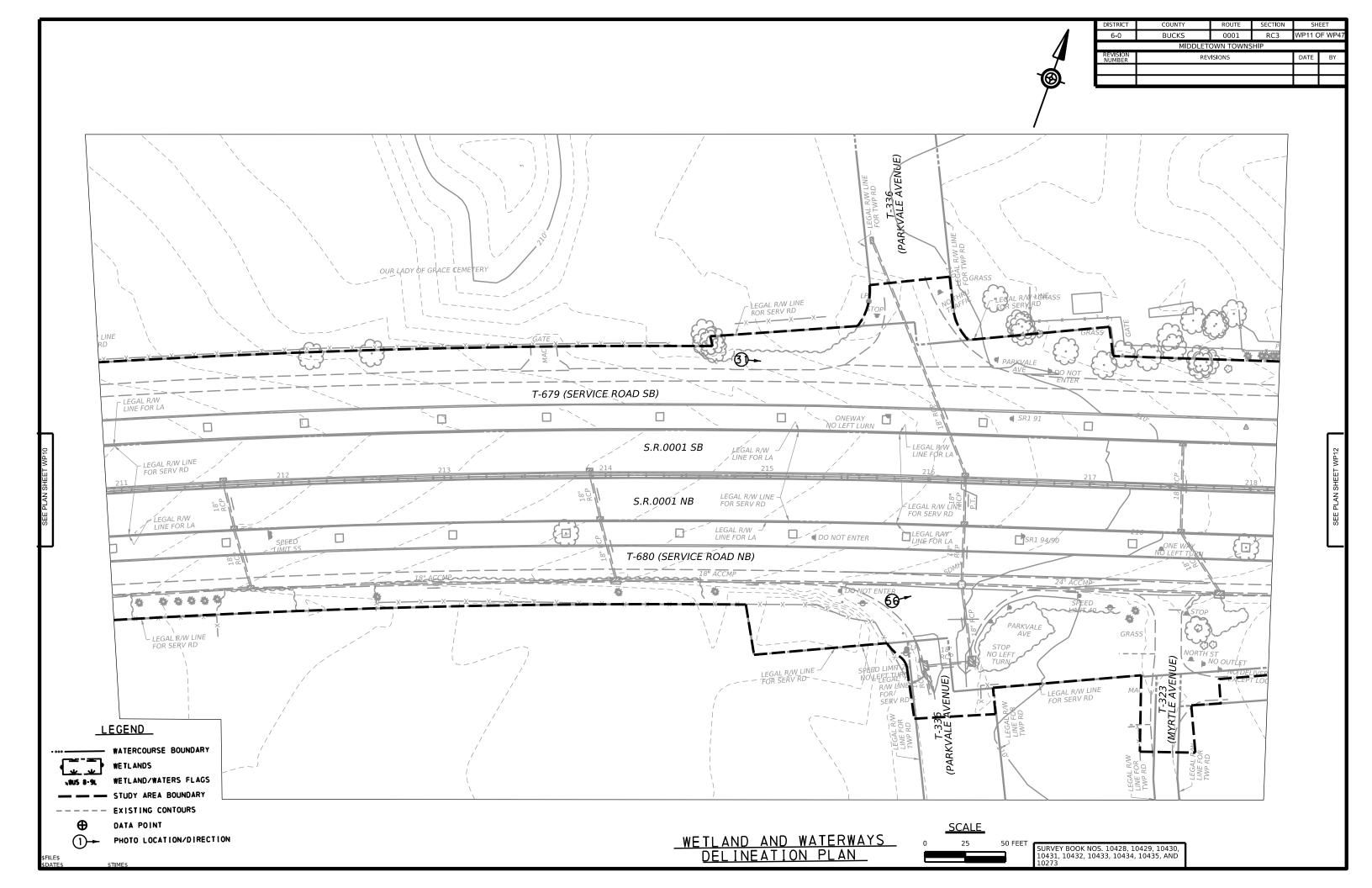


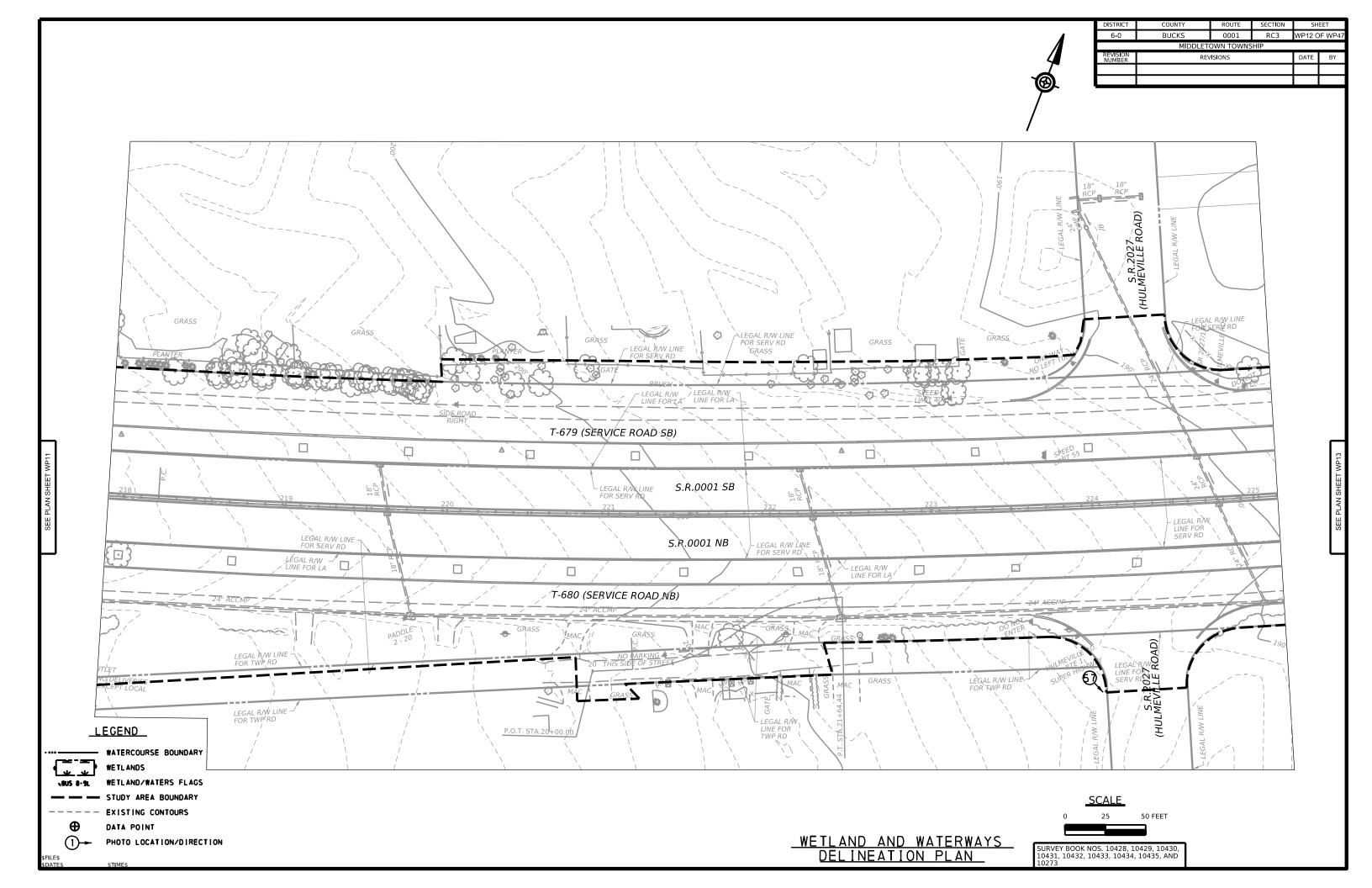


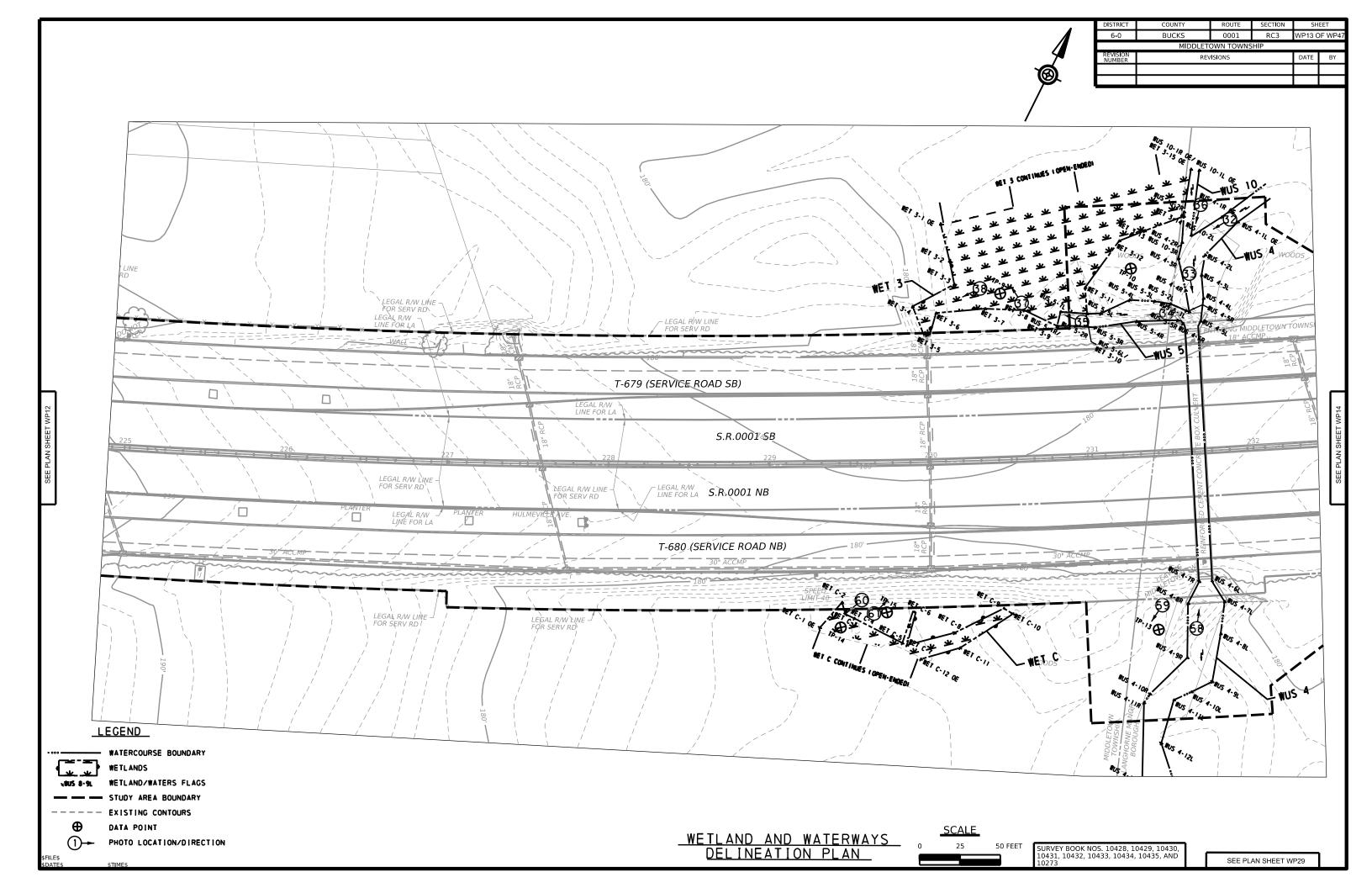


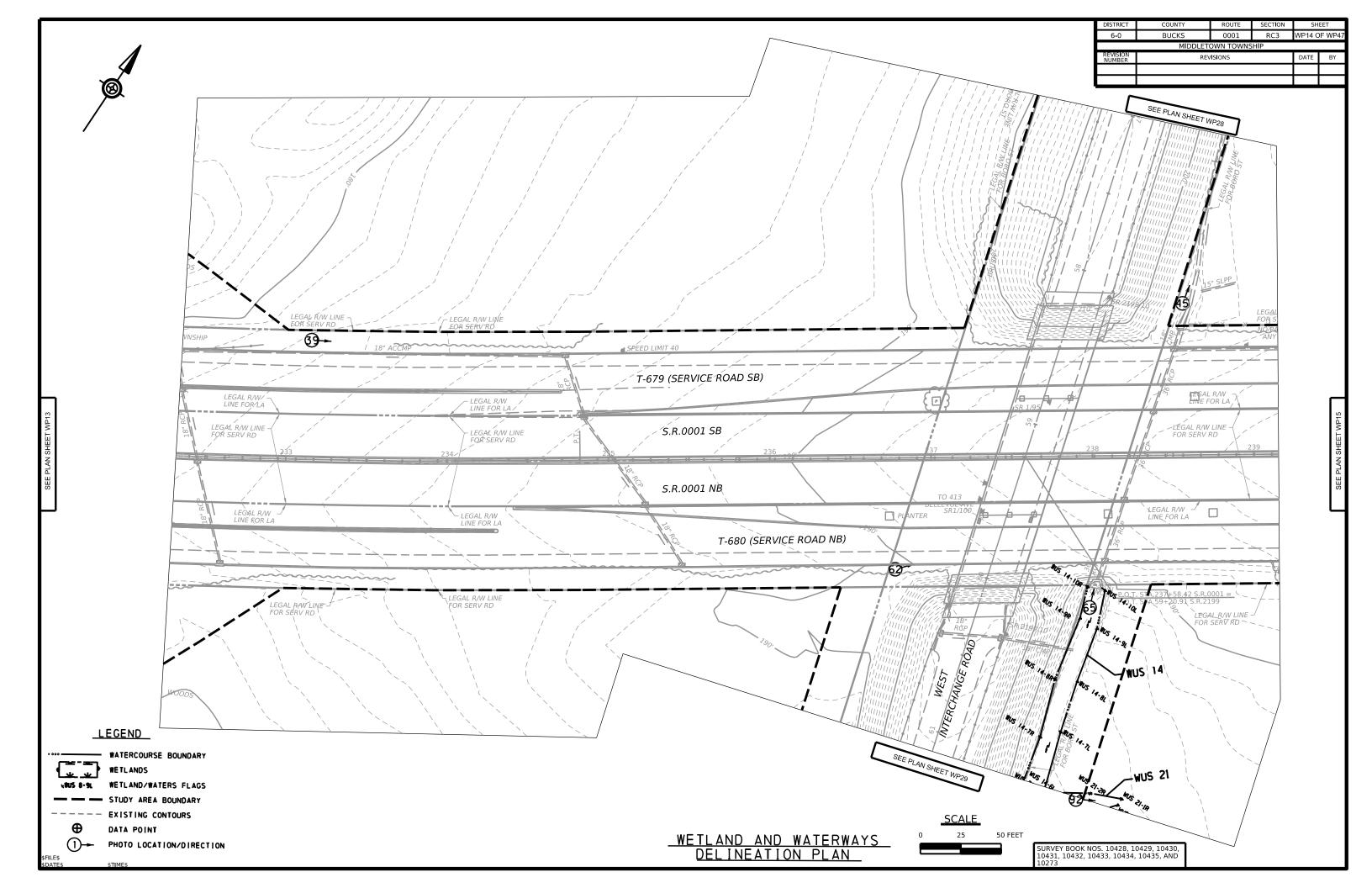


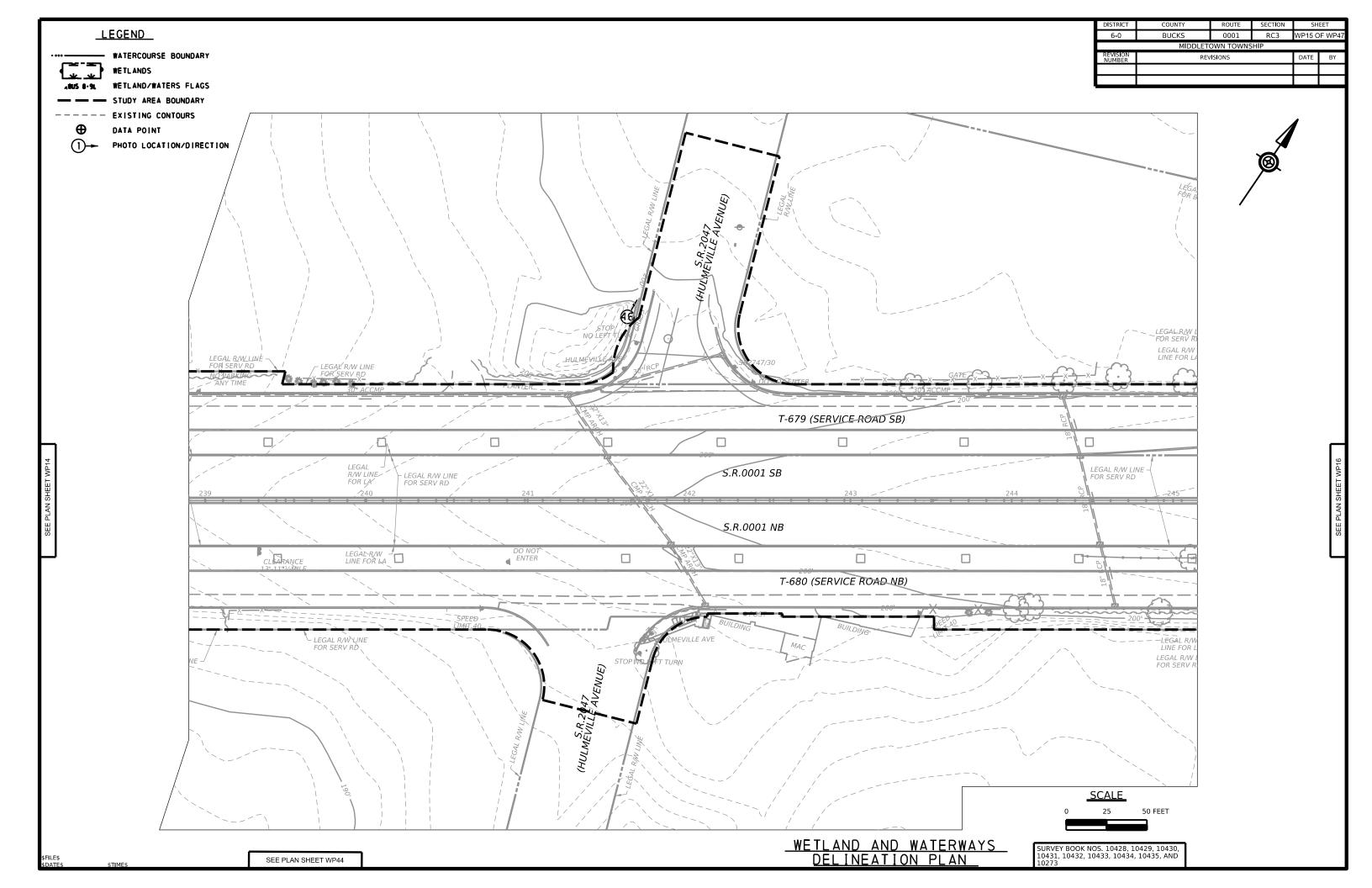


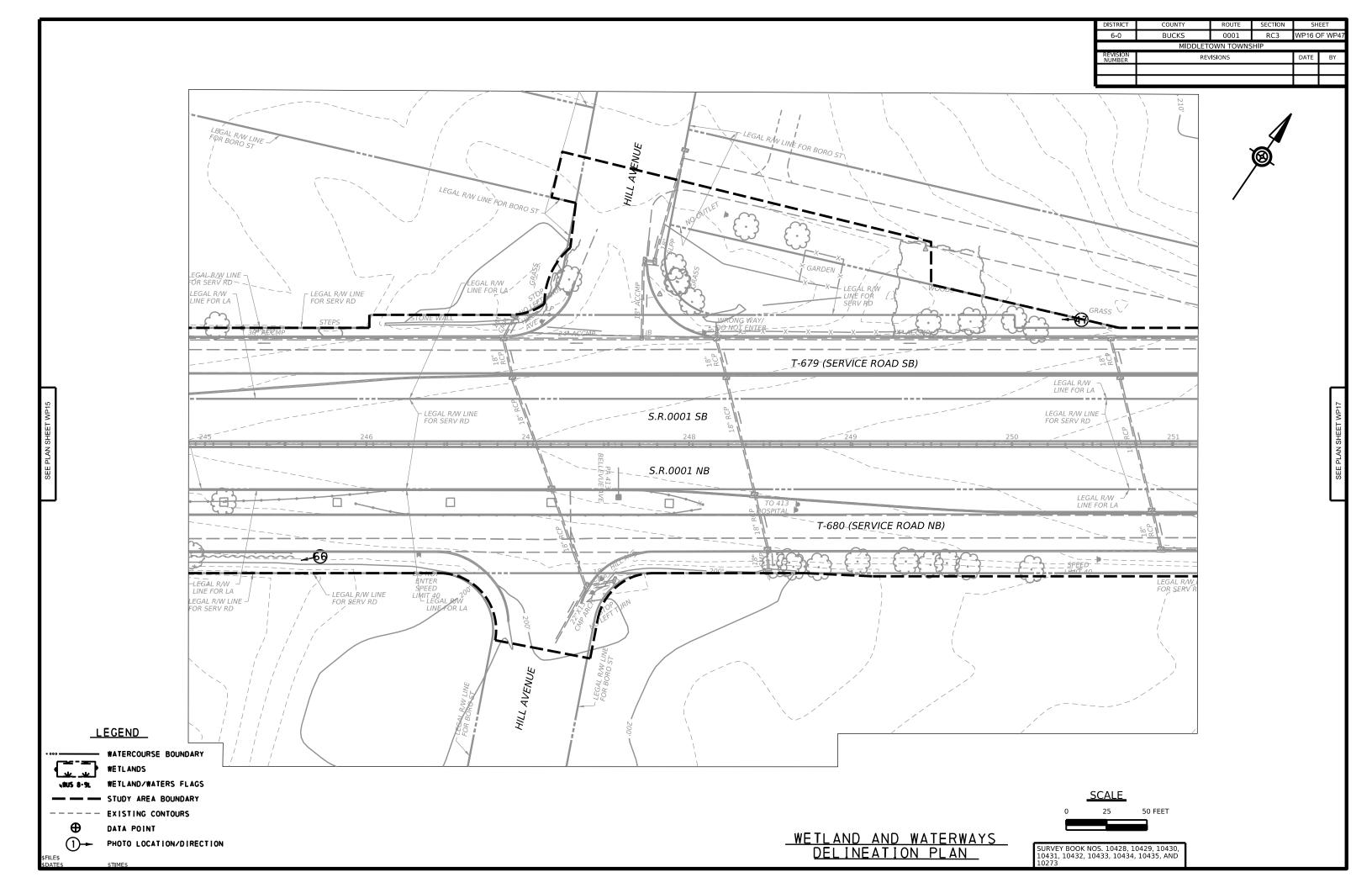


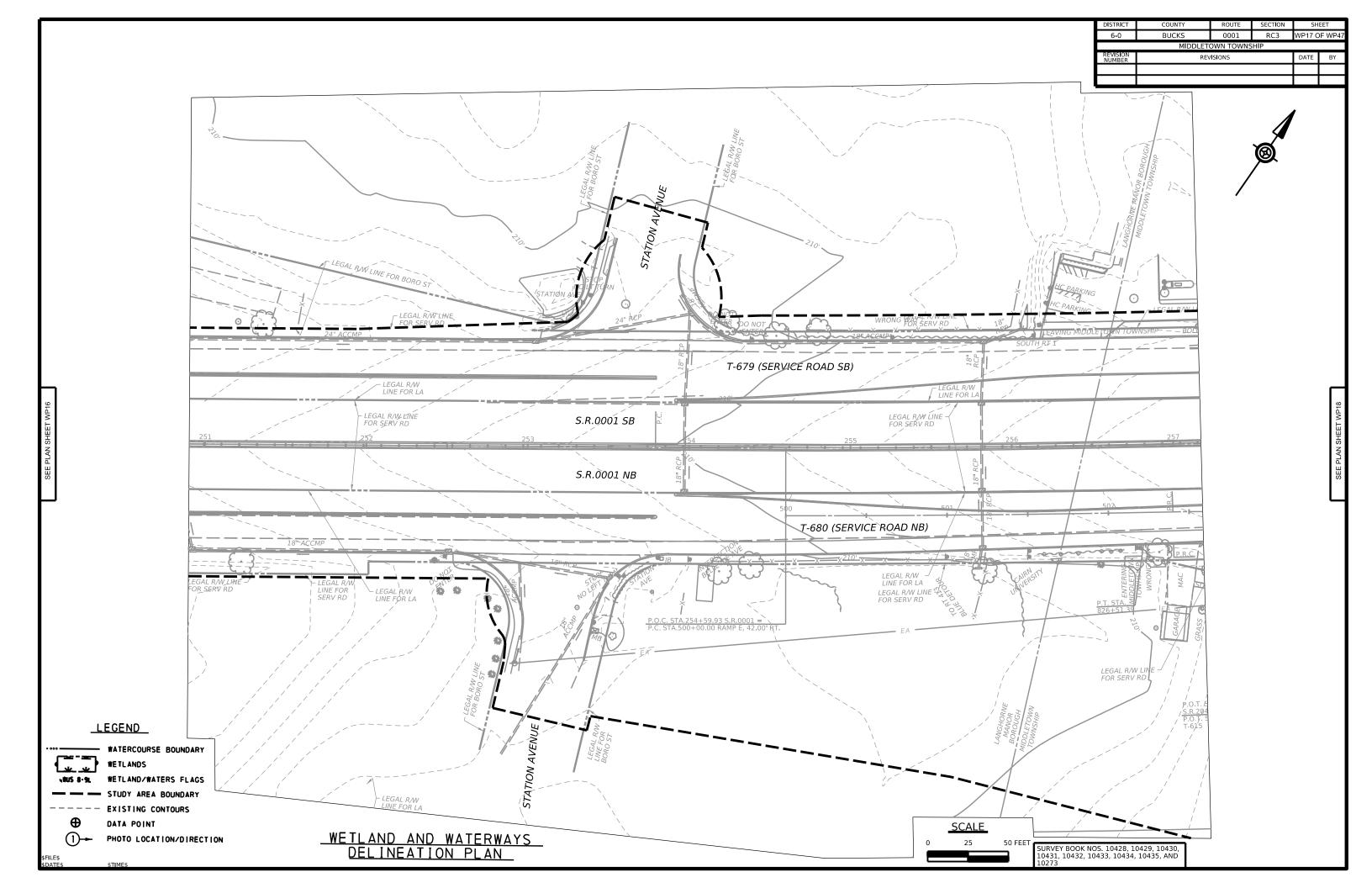


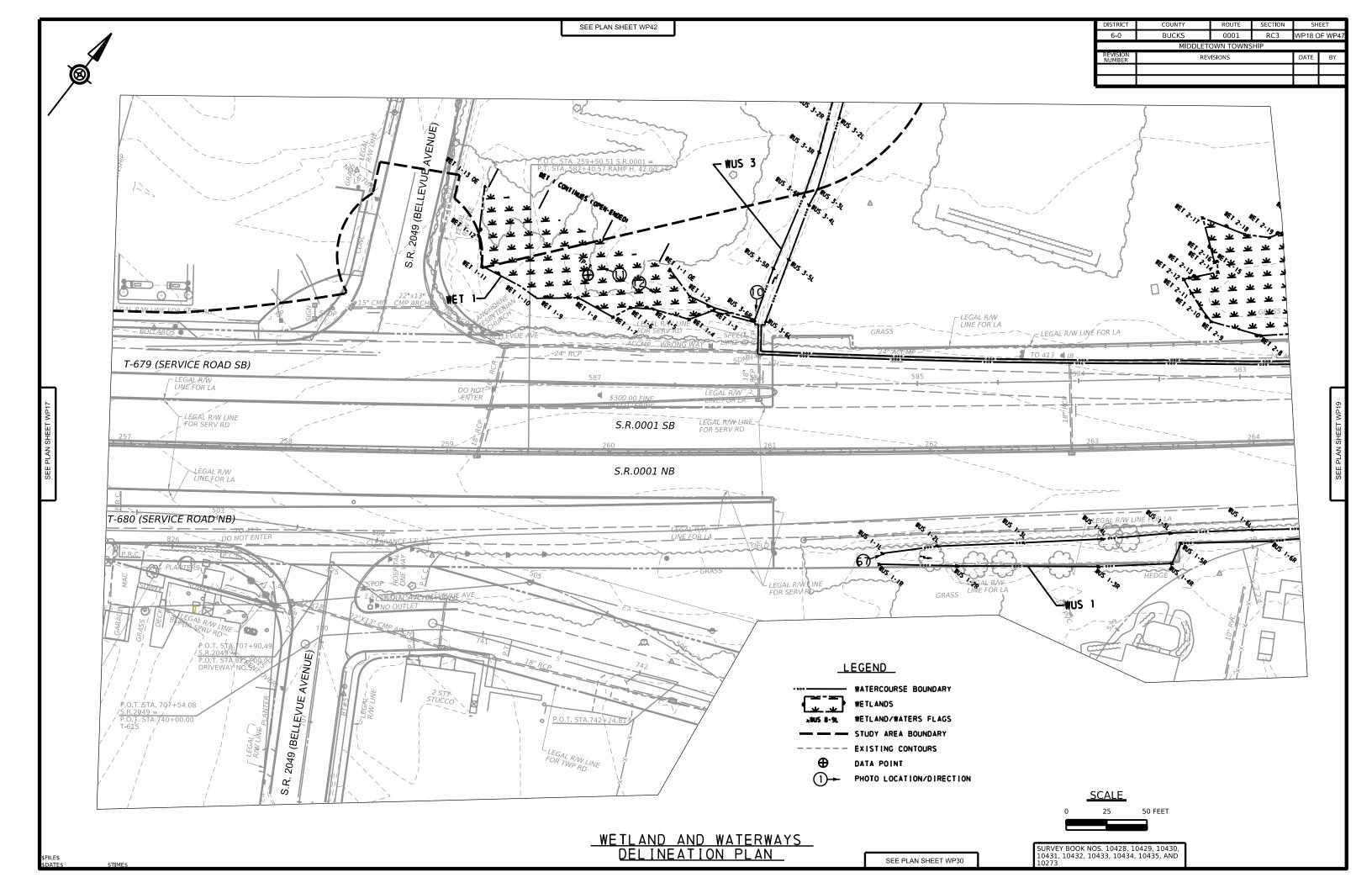


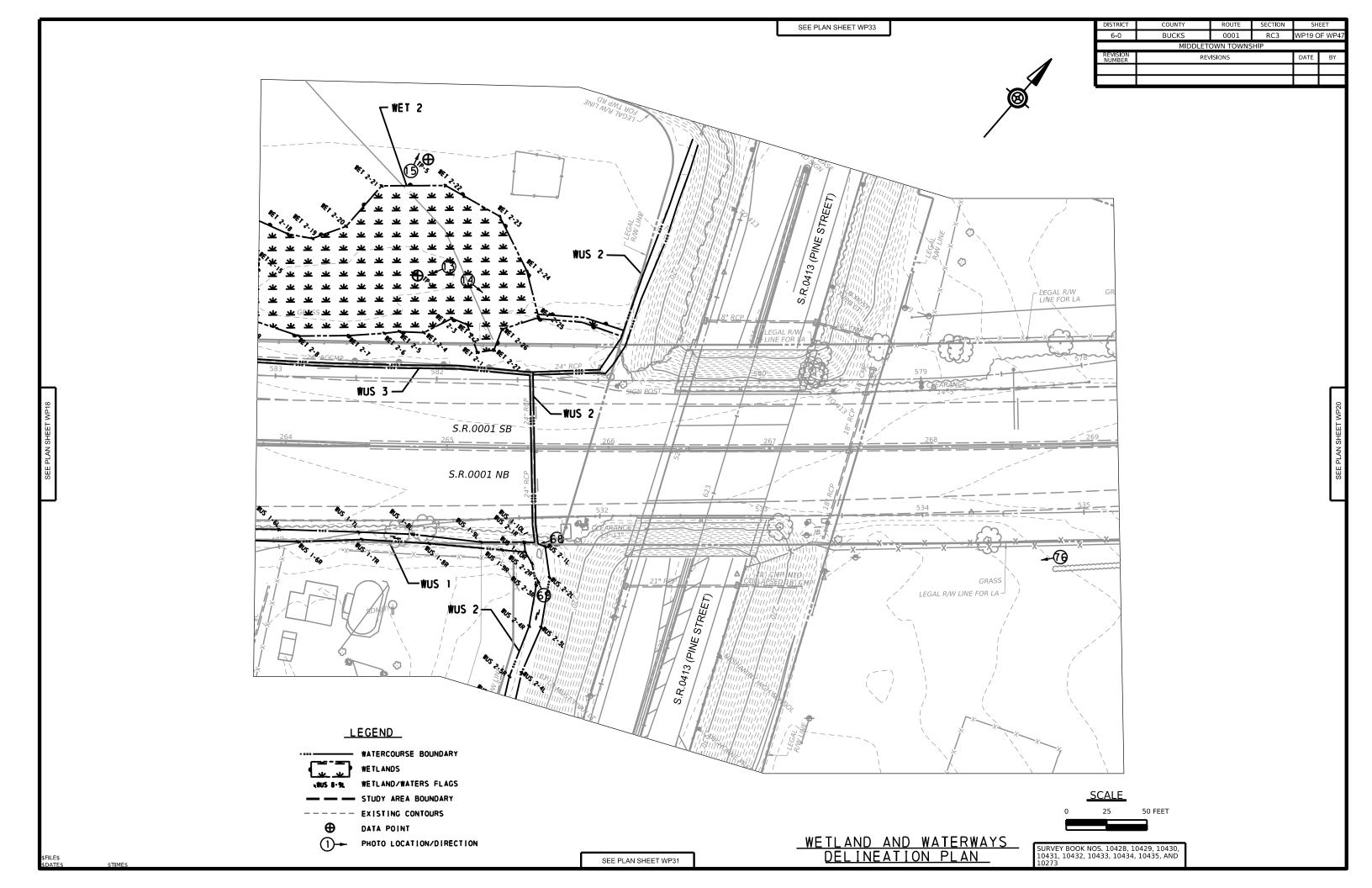


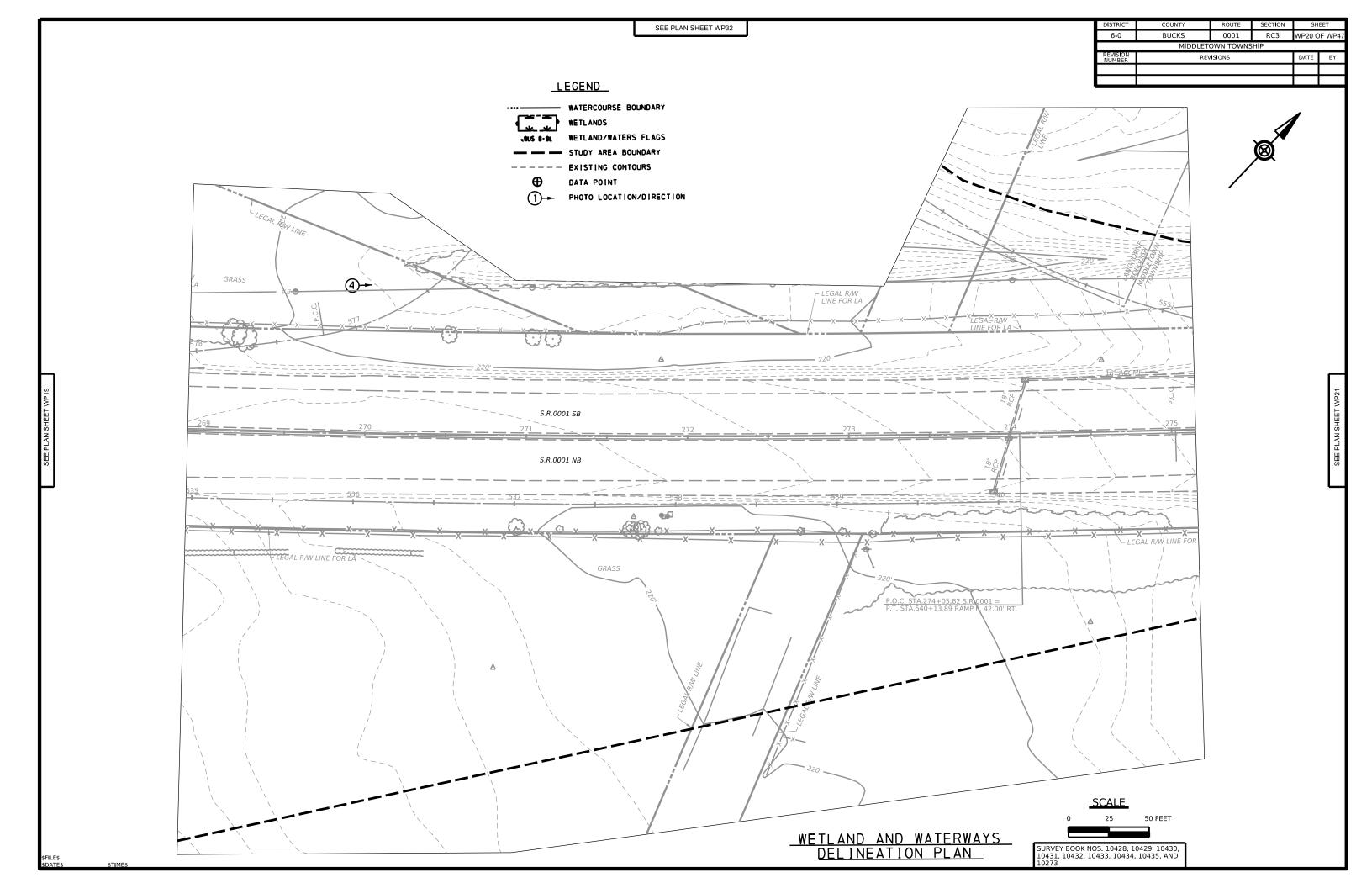


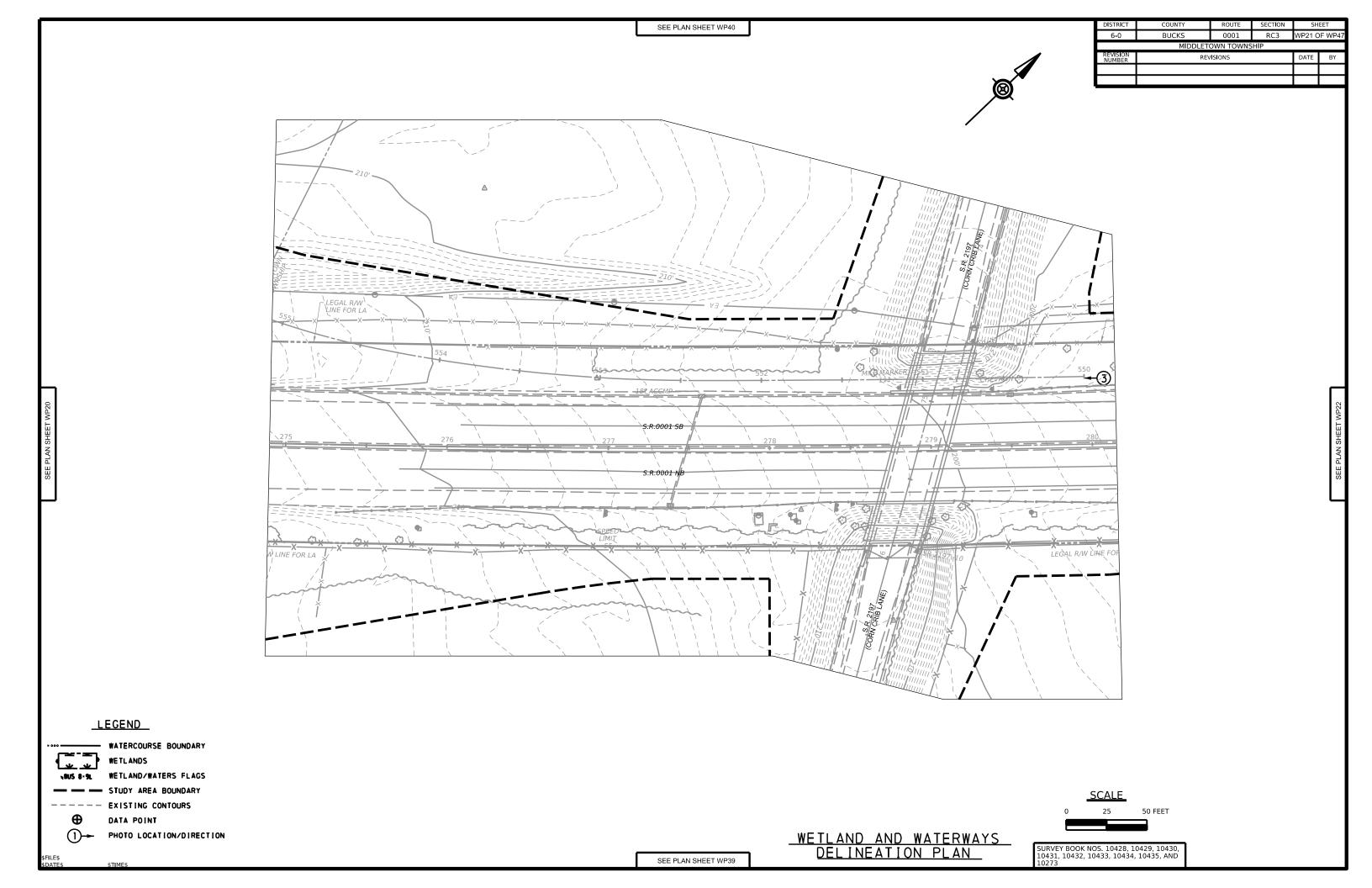


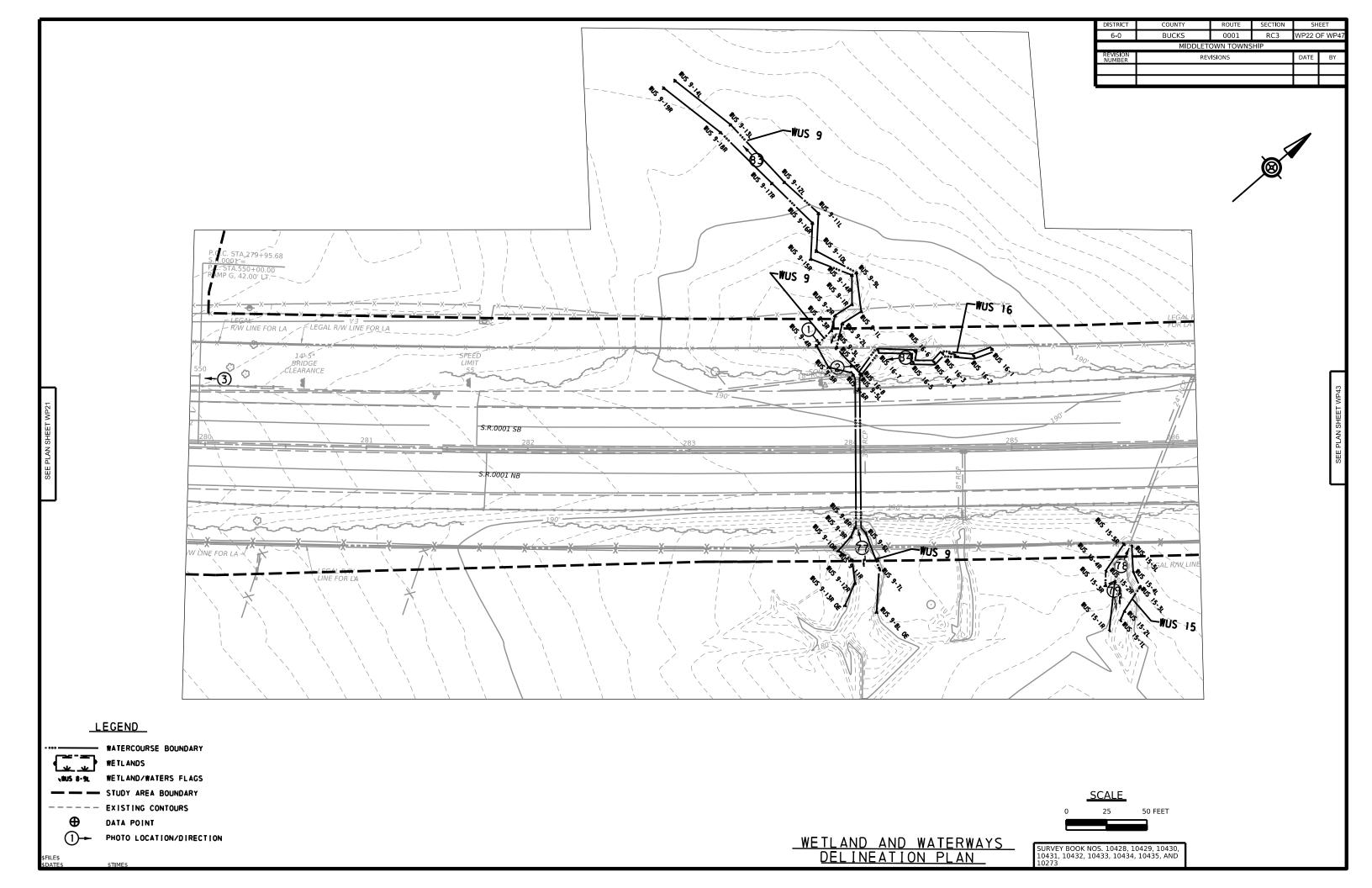


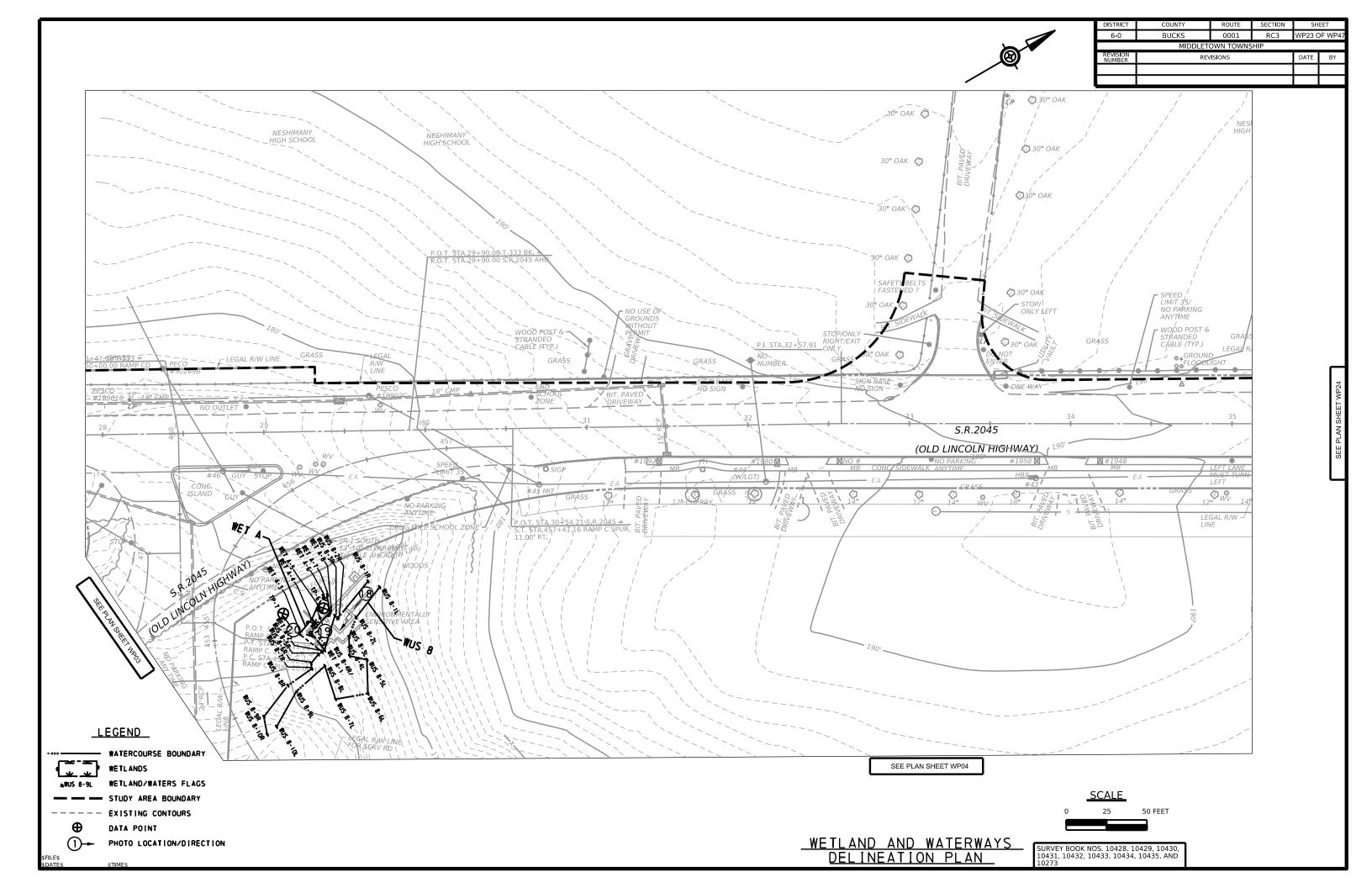


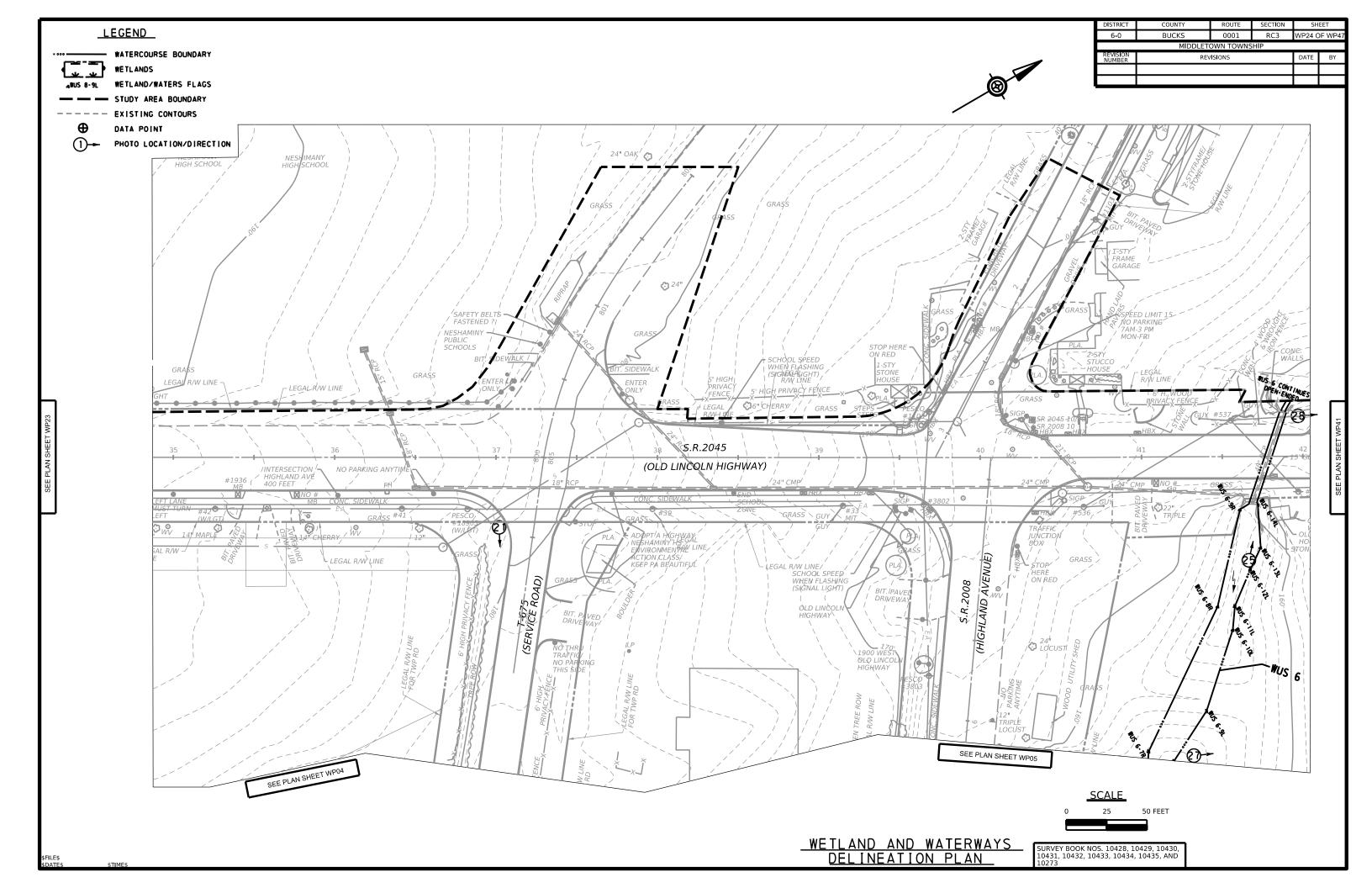


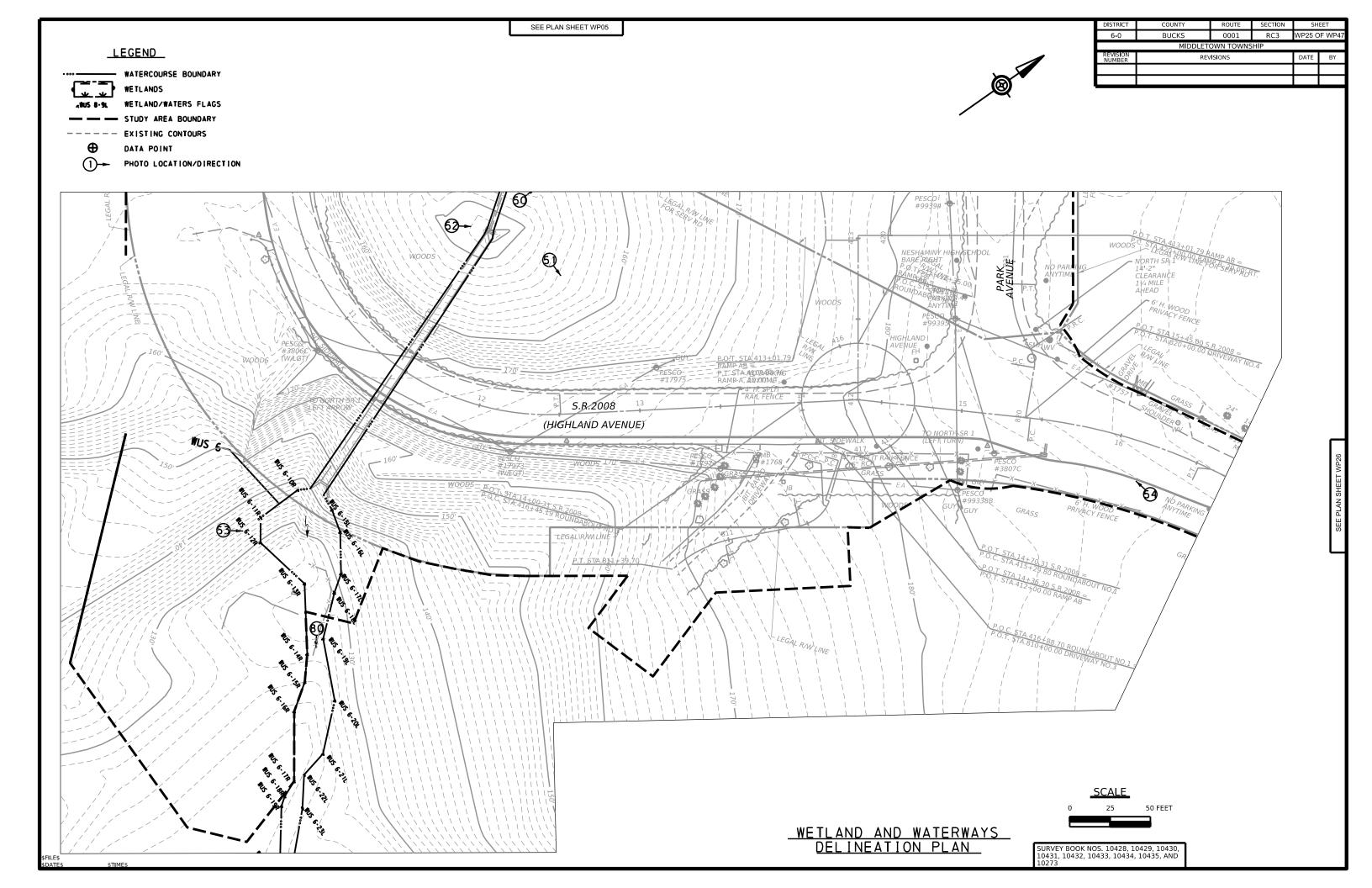


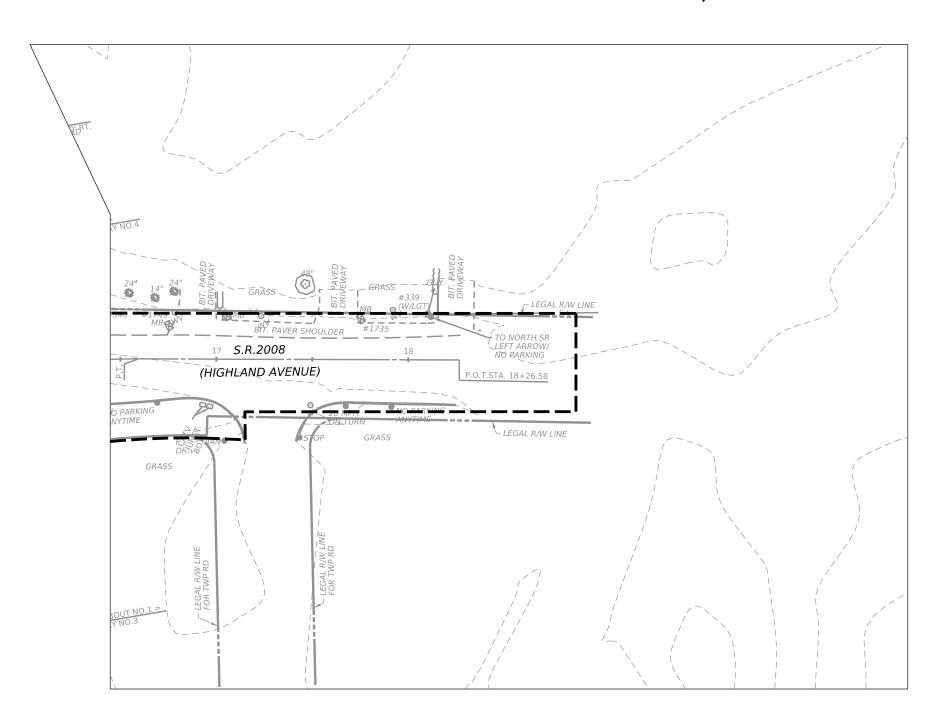










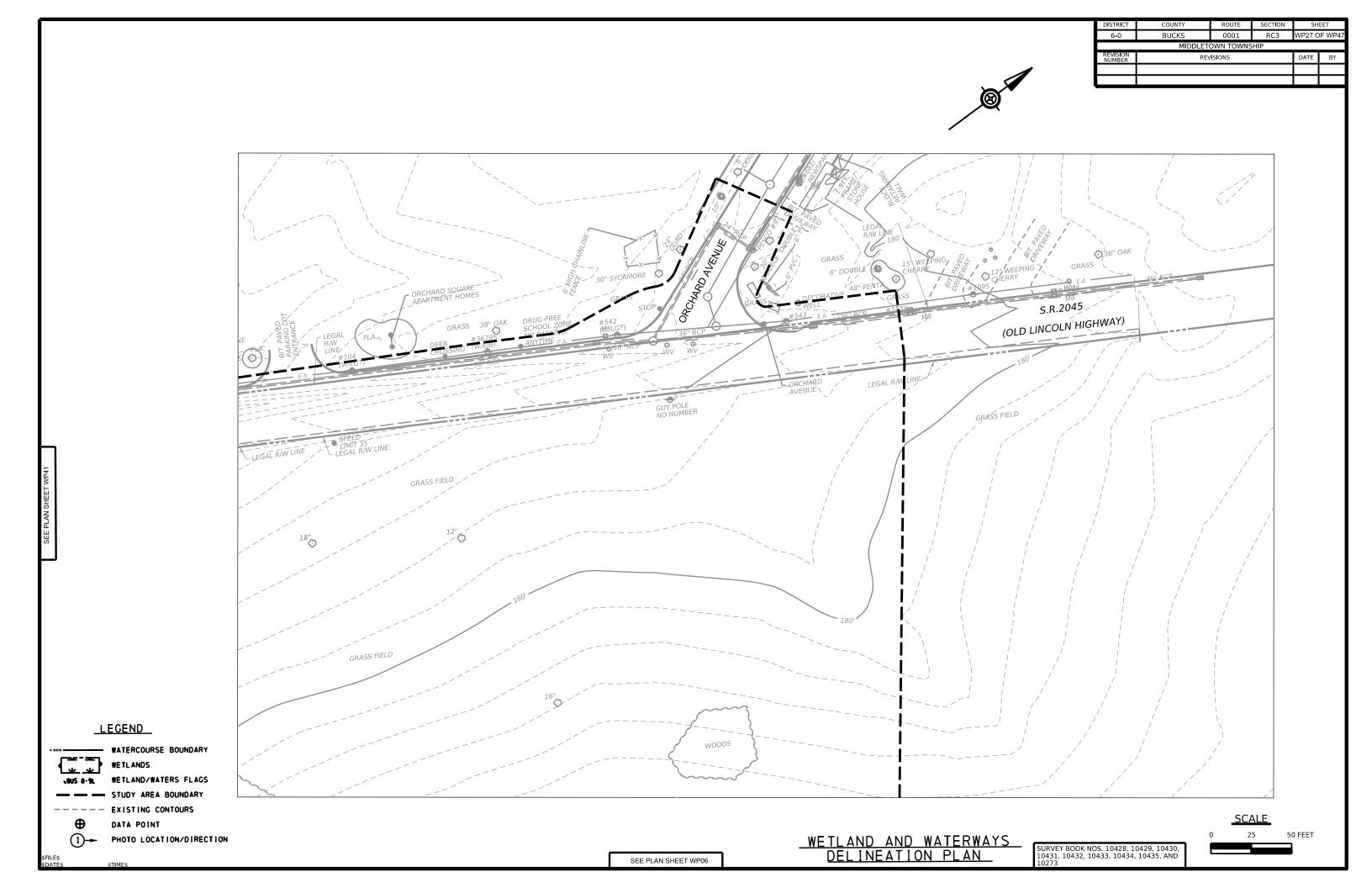


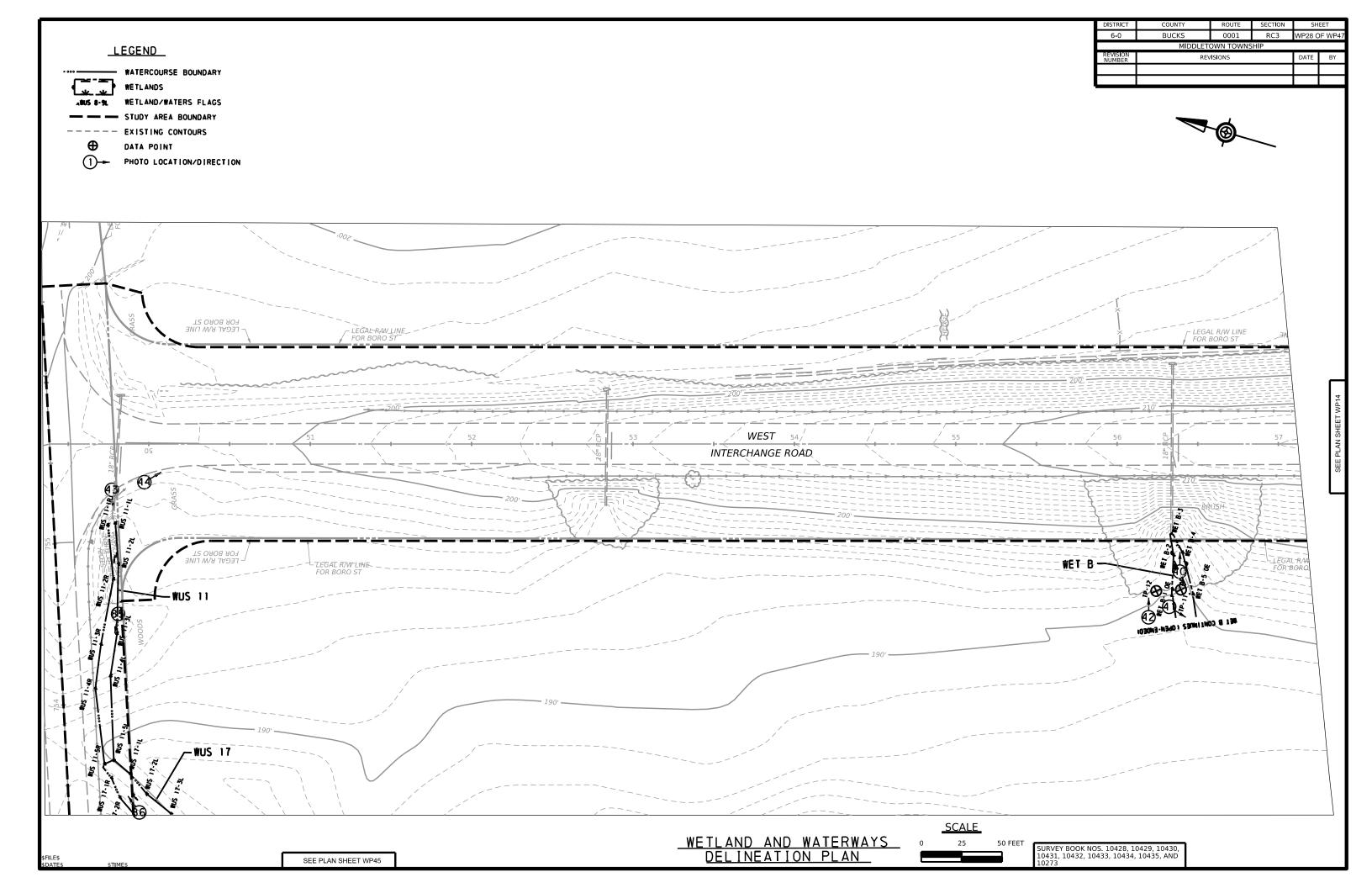
DISTRICT	COUNTY	ROUTE	SECTION	SHEET					
6-0	BUCKS	0001	RC3	WP26 C	F WP47				
MIDDLETOWN TOWNSHIP									
REVISION NUMBER	REVISIONS			DATE	BY				

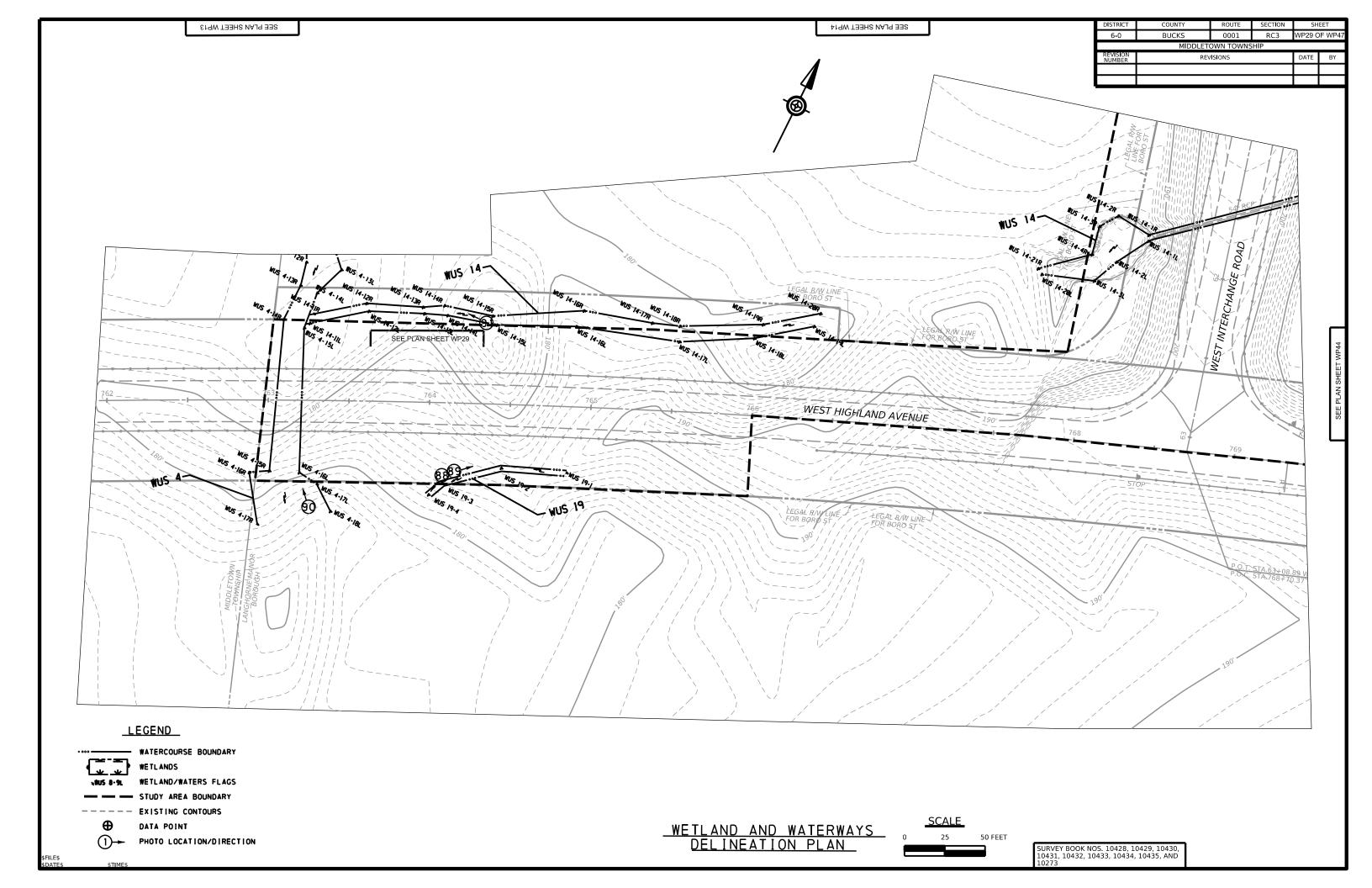
LEGEND

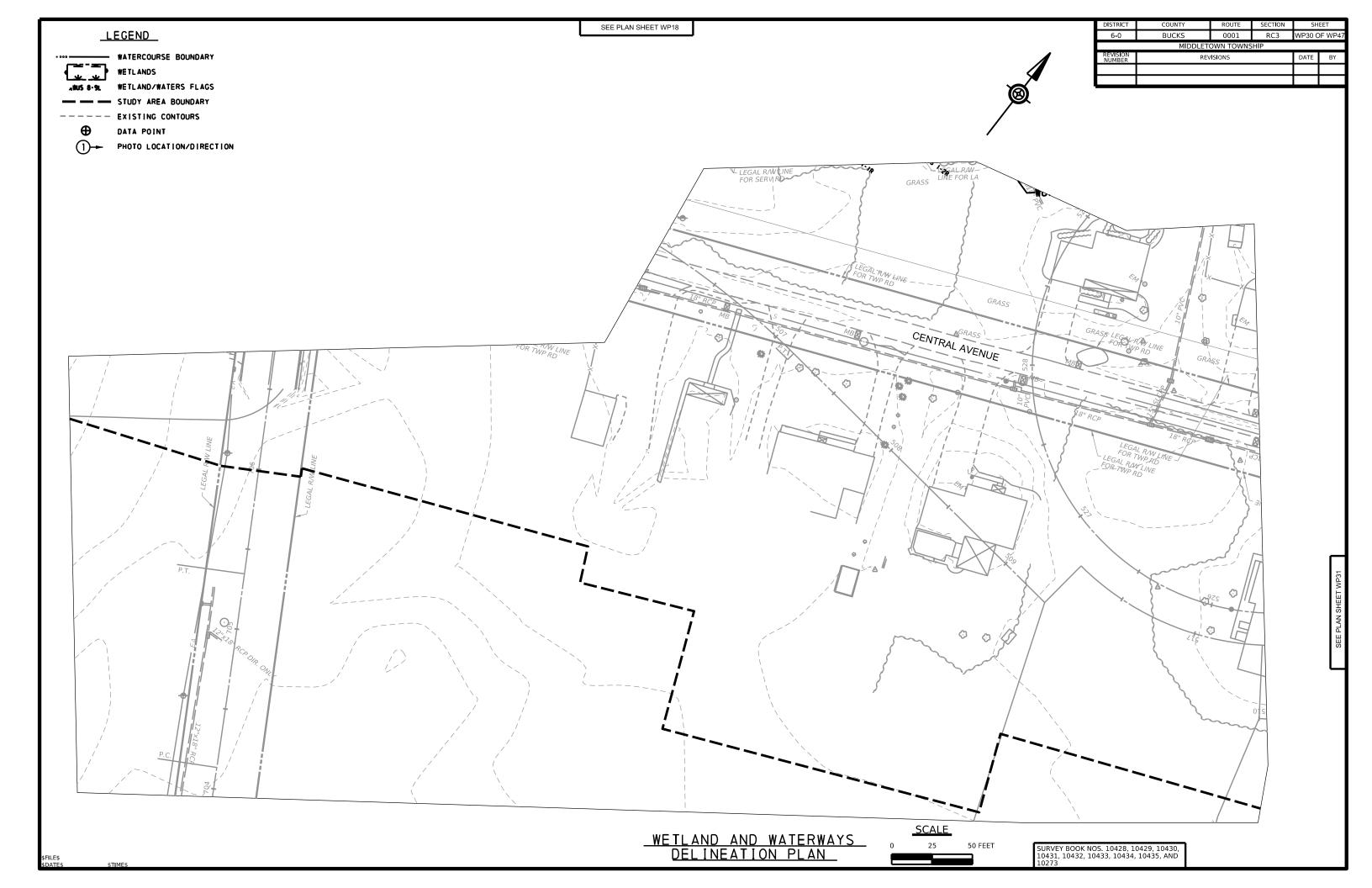
WATERCOURSE BOUNDARY
WETLANDS

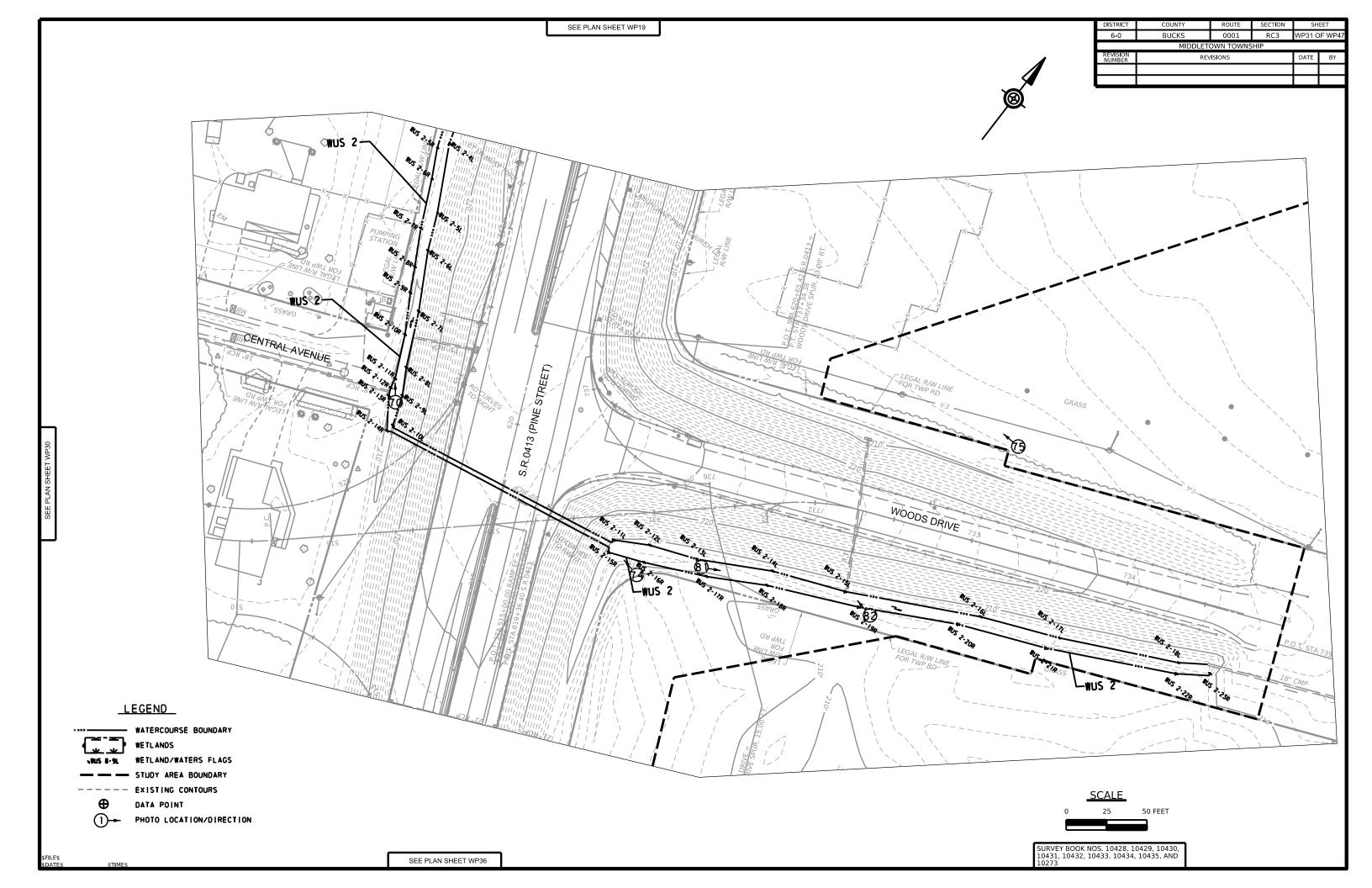
---- EXISTING CONTOURS

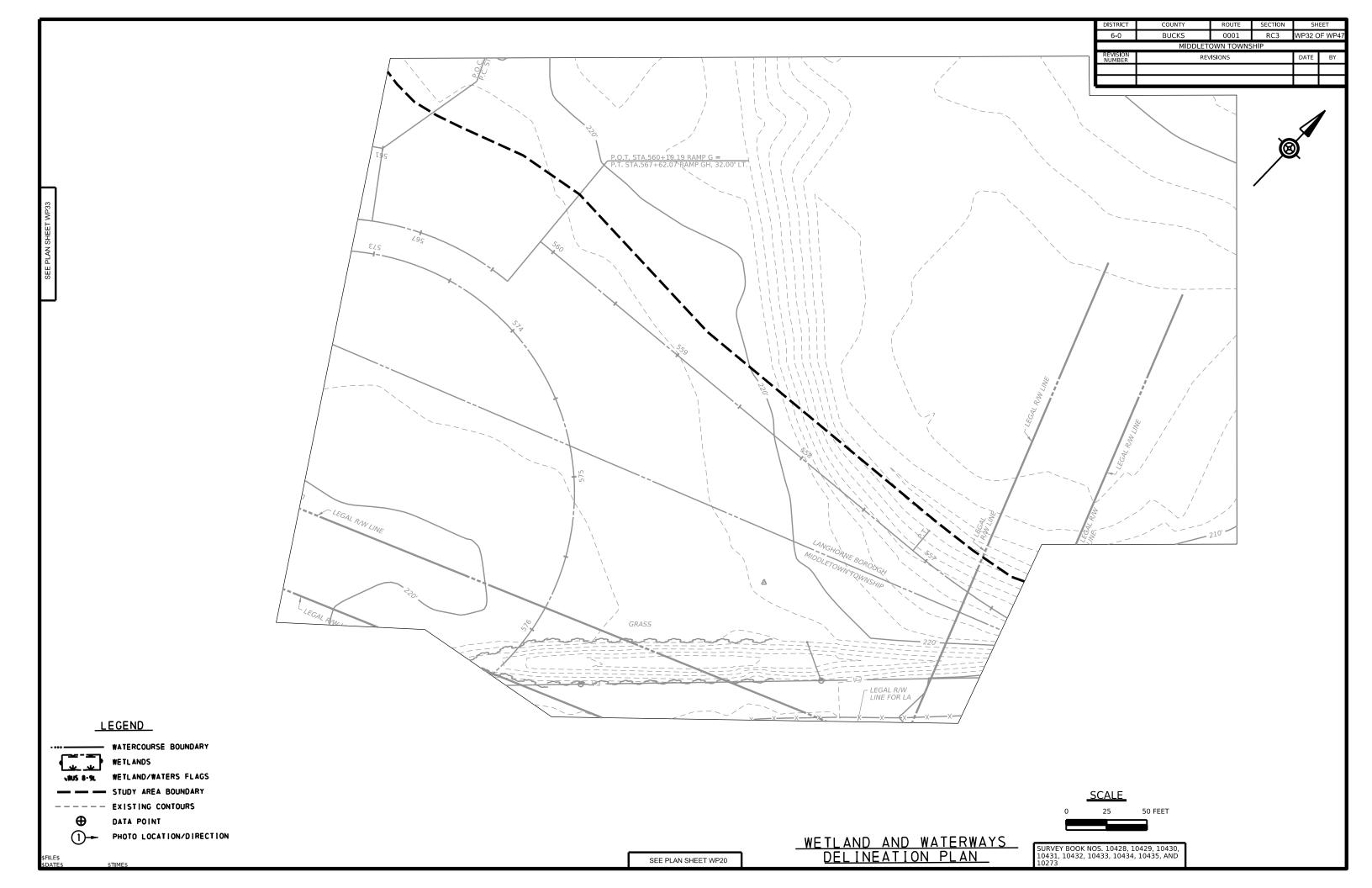

DATA POINT

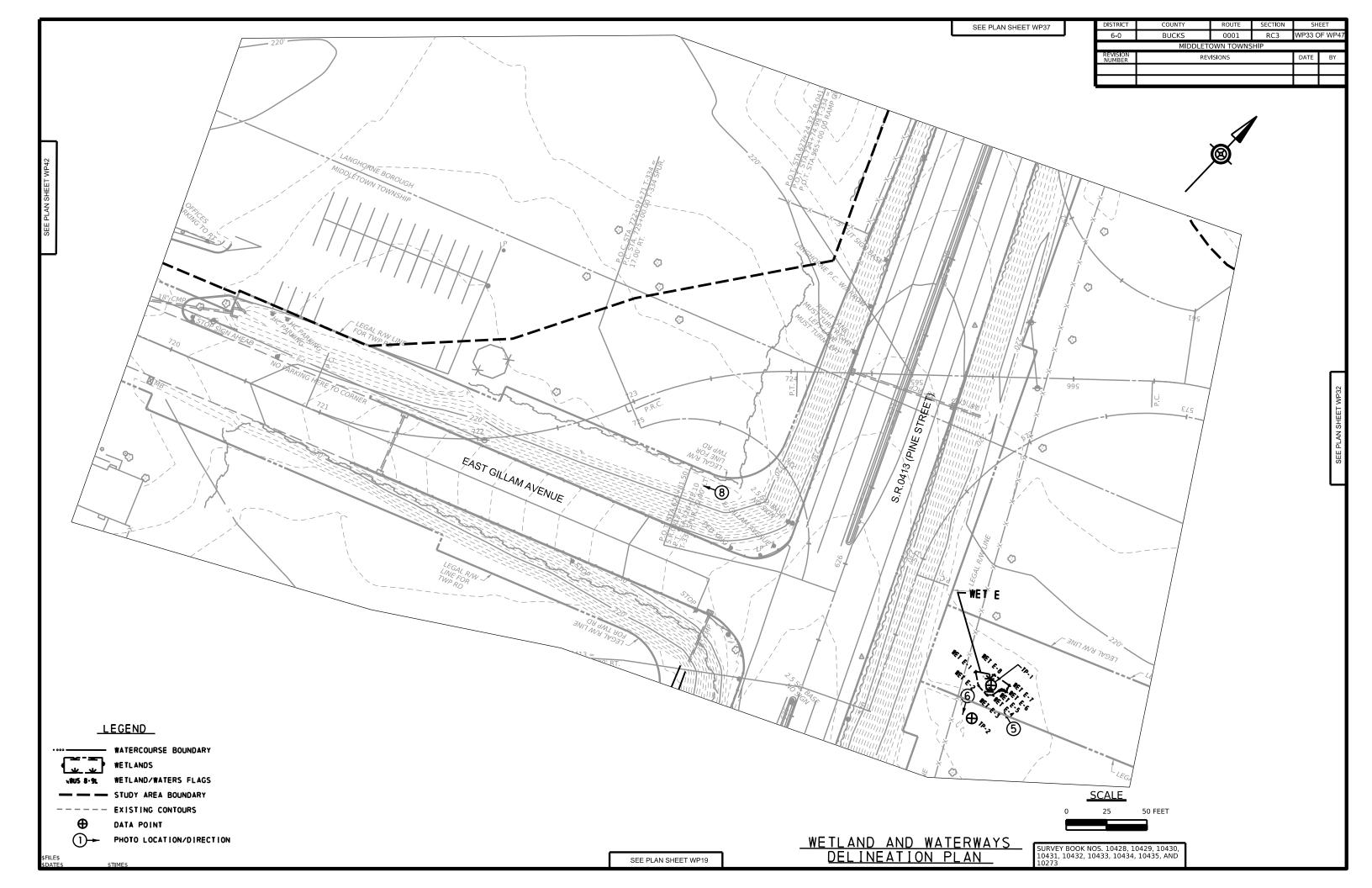

PHOTO LOCATION/DIRECTION

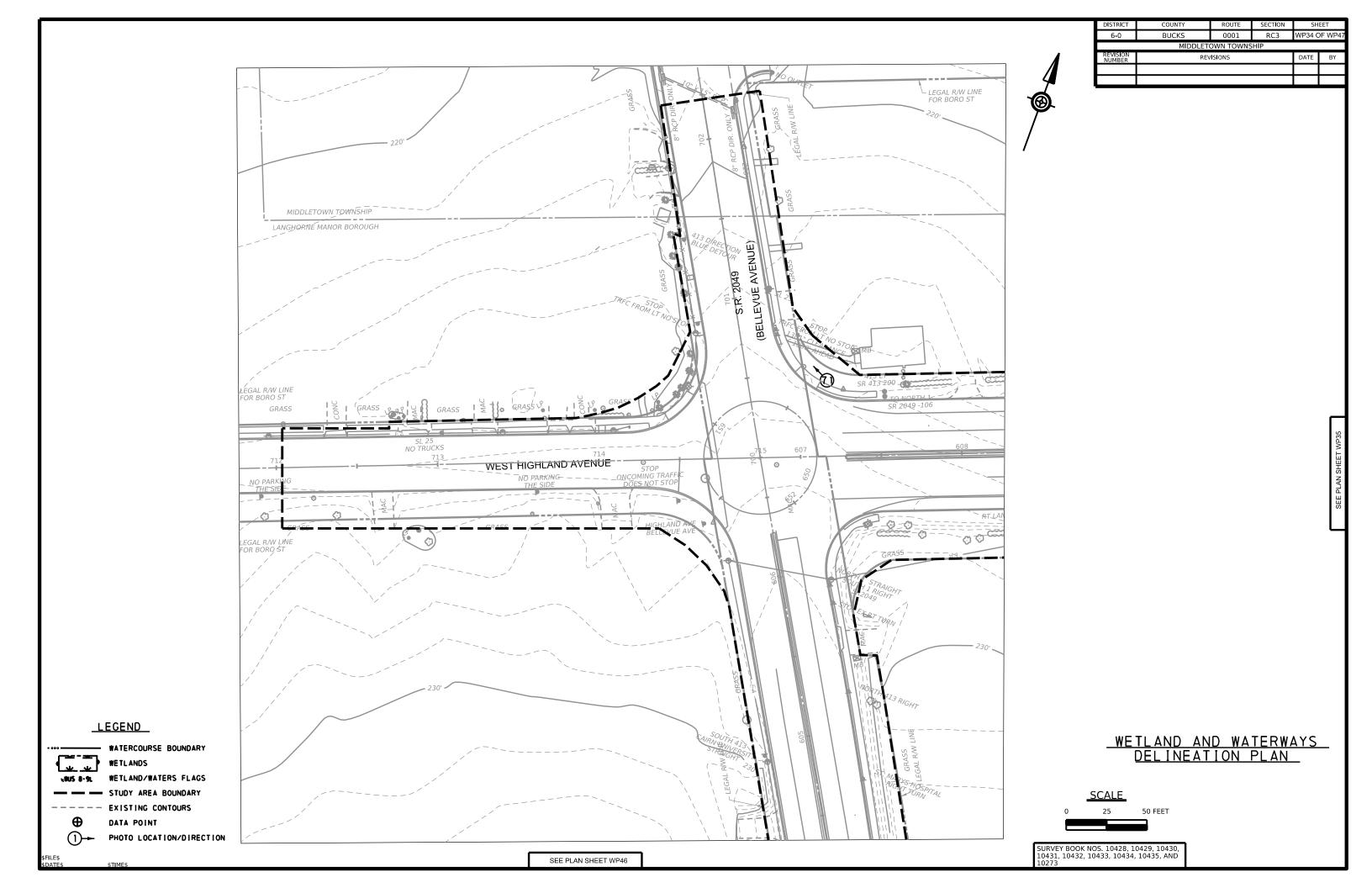

WETLAND AND WATERWAYS
DELINEATION PLAN

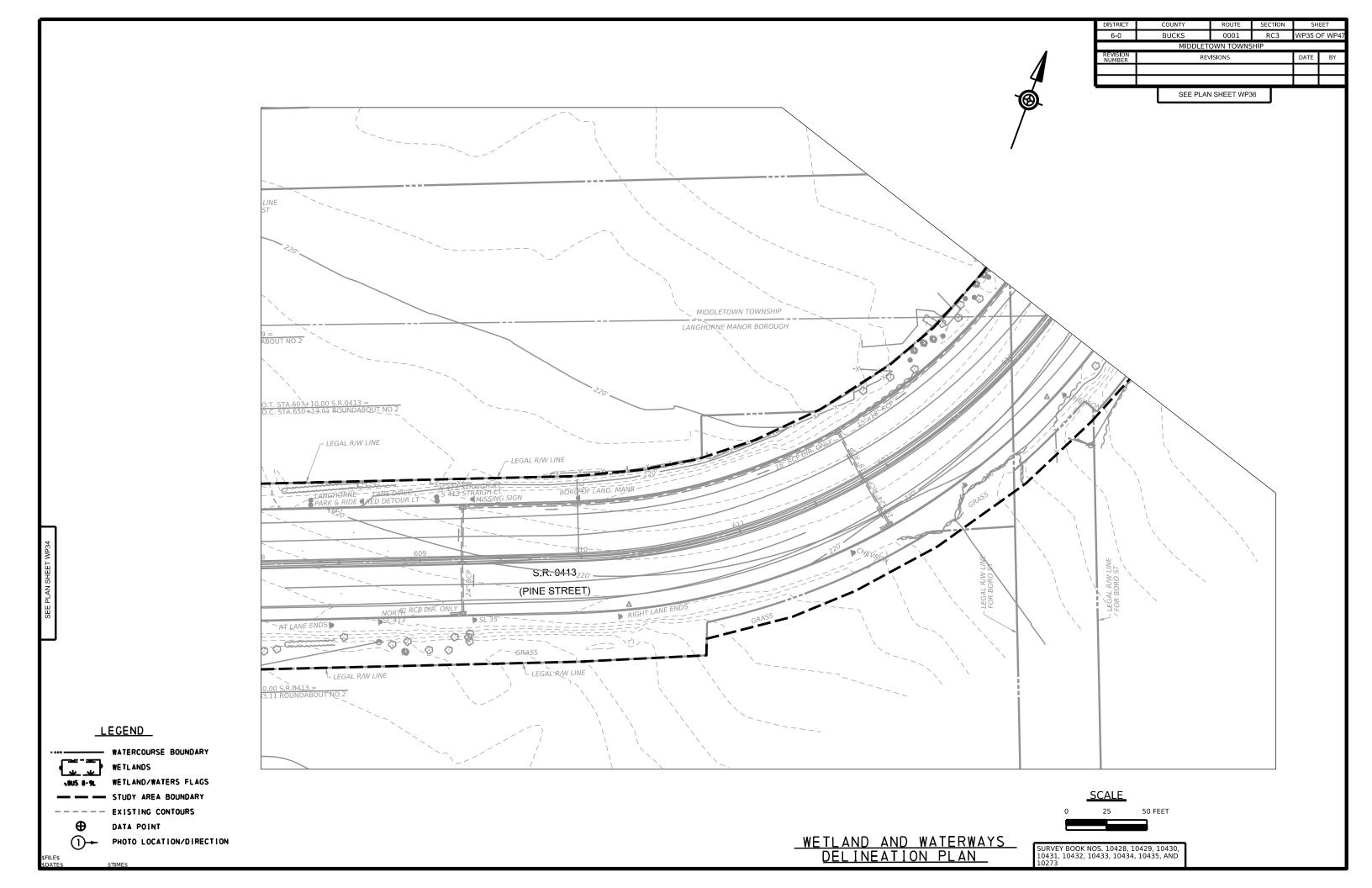

0 25 50 FEET

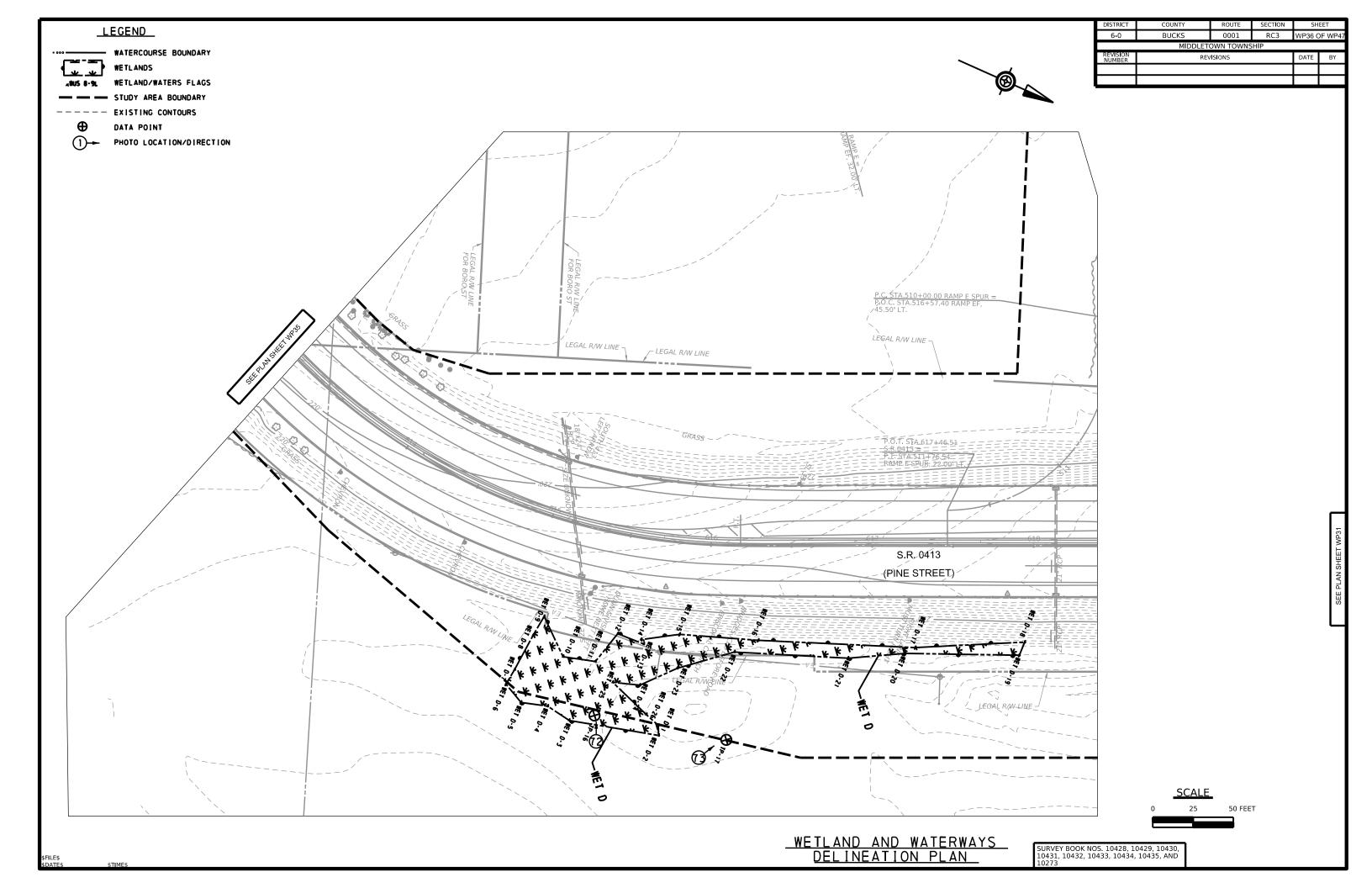

SURVEY BOOK NOS. 10428, 10429, 10430, 10431, 10432, 10433, 10434, 10435, AND 10273

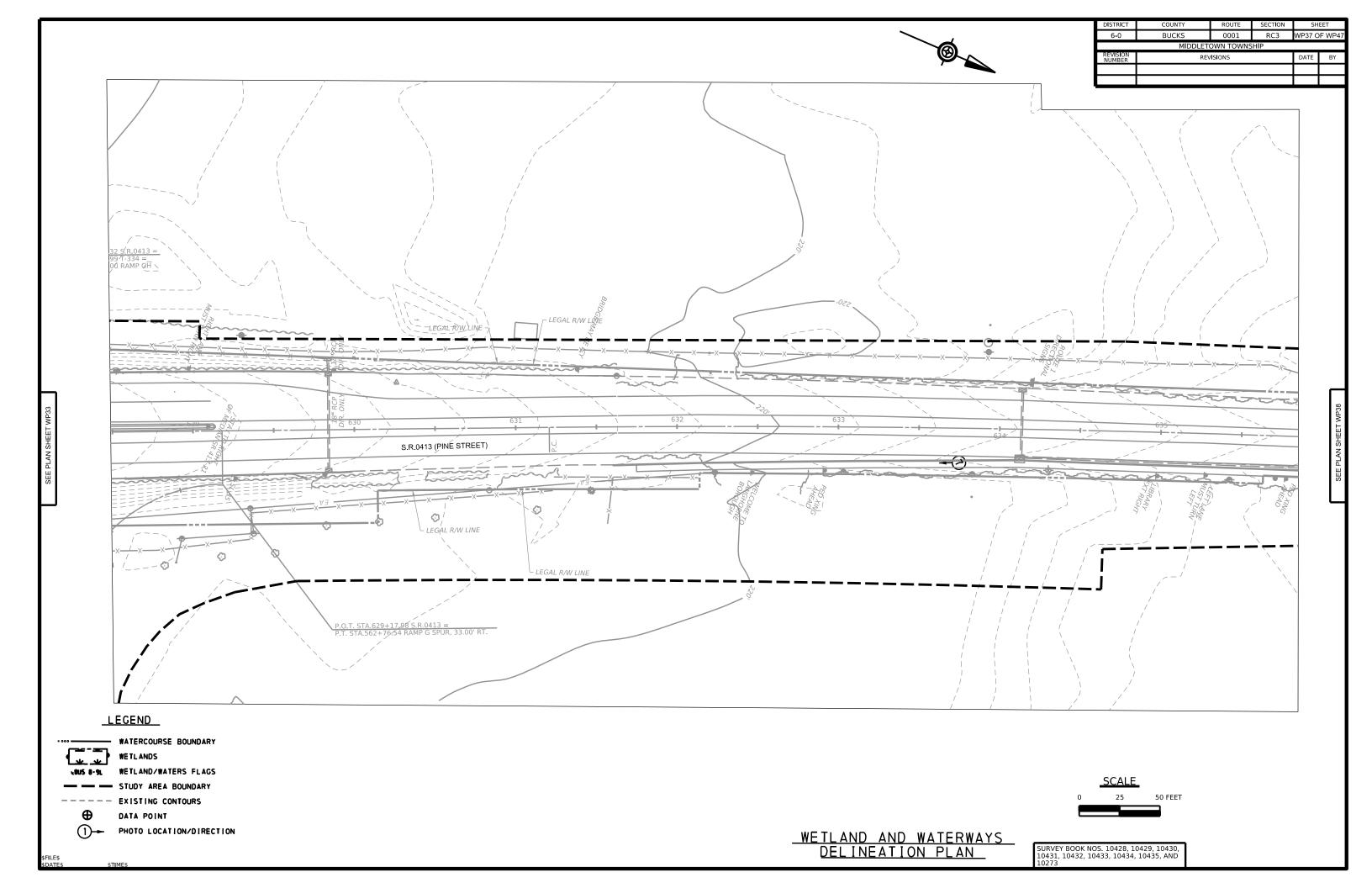


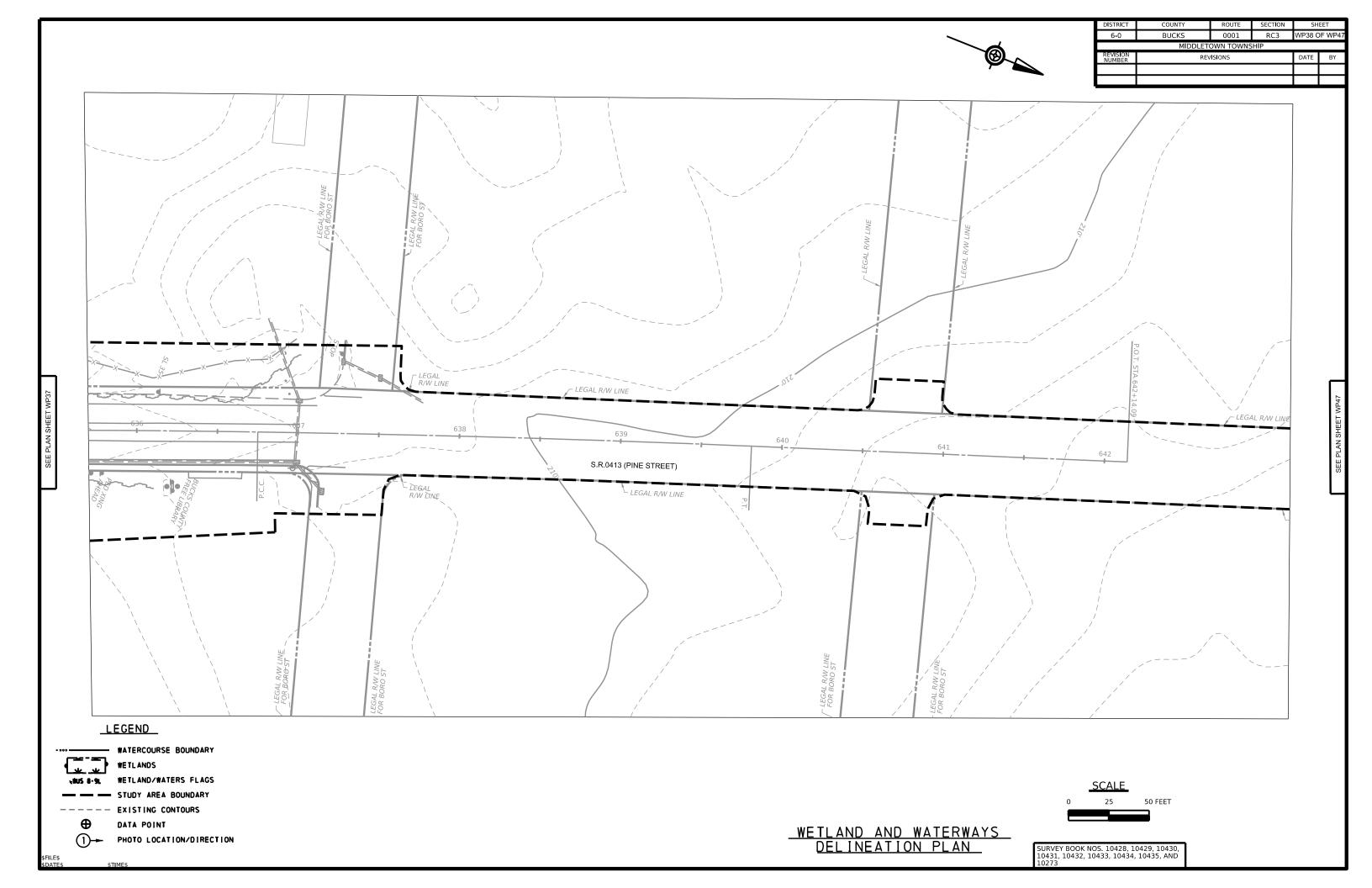












SEE PLAN SHEET WP21

0001

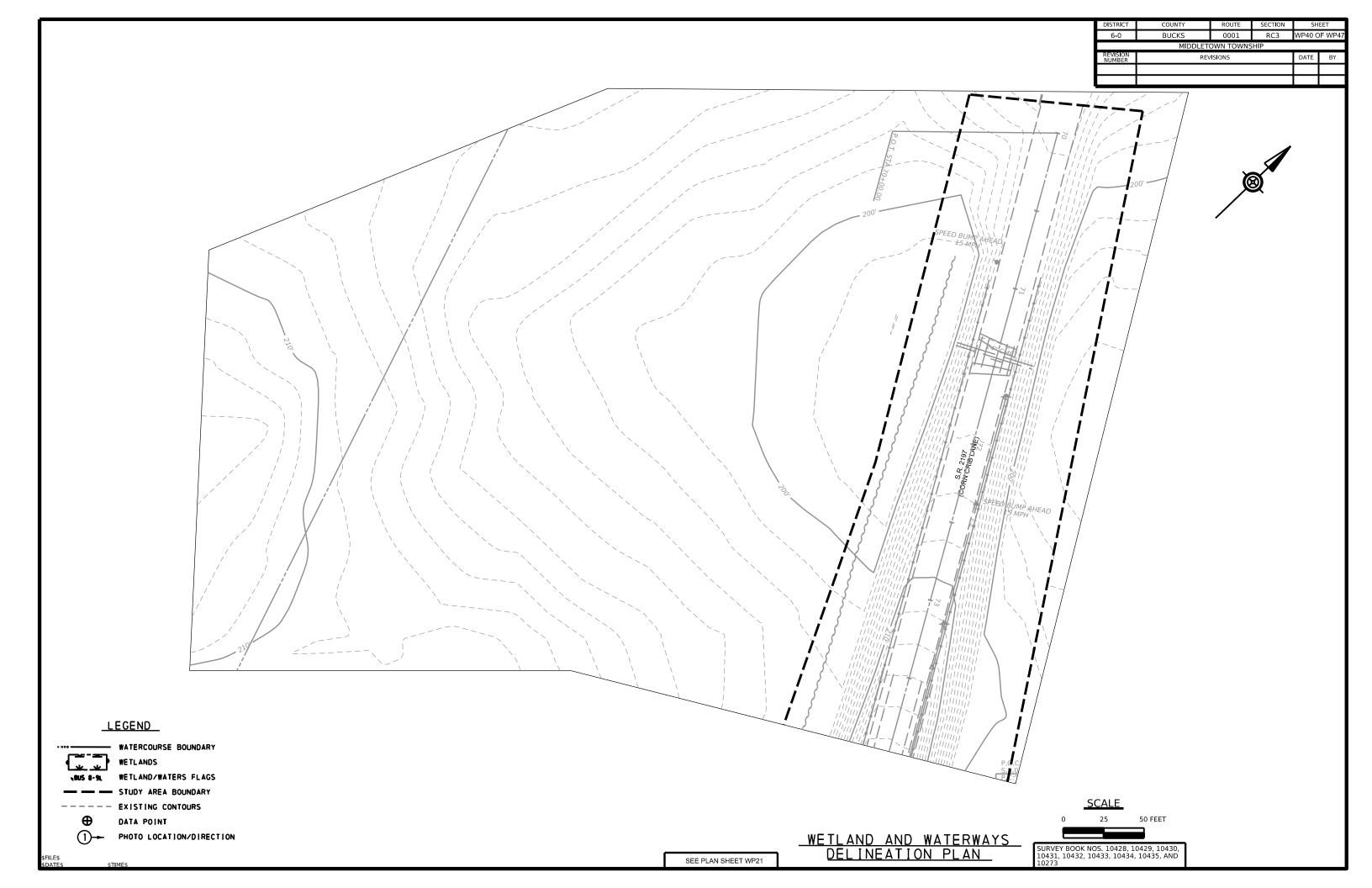
WATERCOURSE BOUNDARY #BUS 8-9L WETLAND/WATERS FLAGS

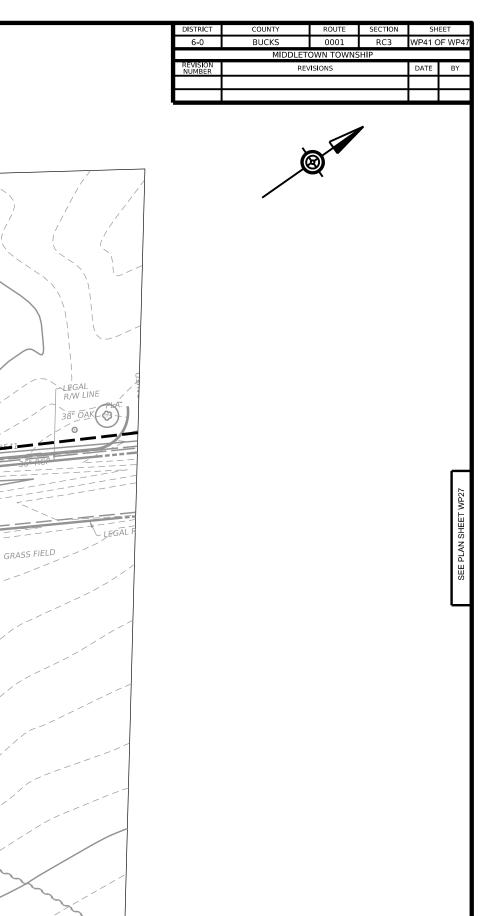
<u>LEGEND</u>

- STUDY AREA BOUNDARY

---- EXISTING CONTOURS

DATA POINT


1) -- PHOTO LOCATION/DIRECTION



WETLAND AND WATERWAYS
DELINEATION PLAN

50 FEET

SURVEY BOOK NOS. 10428, 10429, 10430, 10431, 10432, 10433, 10434, 10435, AND 10273

6 FIGH CHAINLINK FENCE WITH BARB WIRE S.R.2045 (OLD LINCOLN HIGHWAY) HIGHLAND AVENUE (DEAD END)

<u>LEGEND</u>

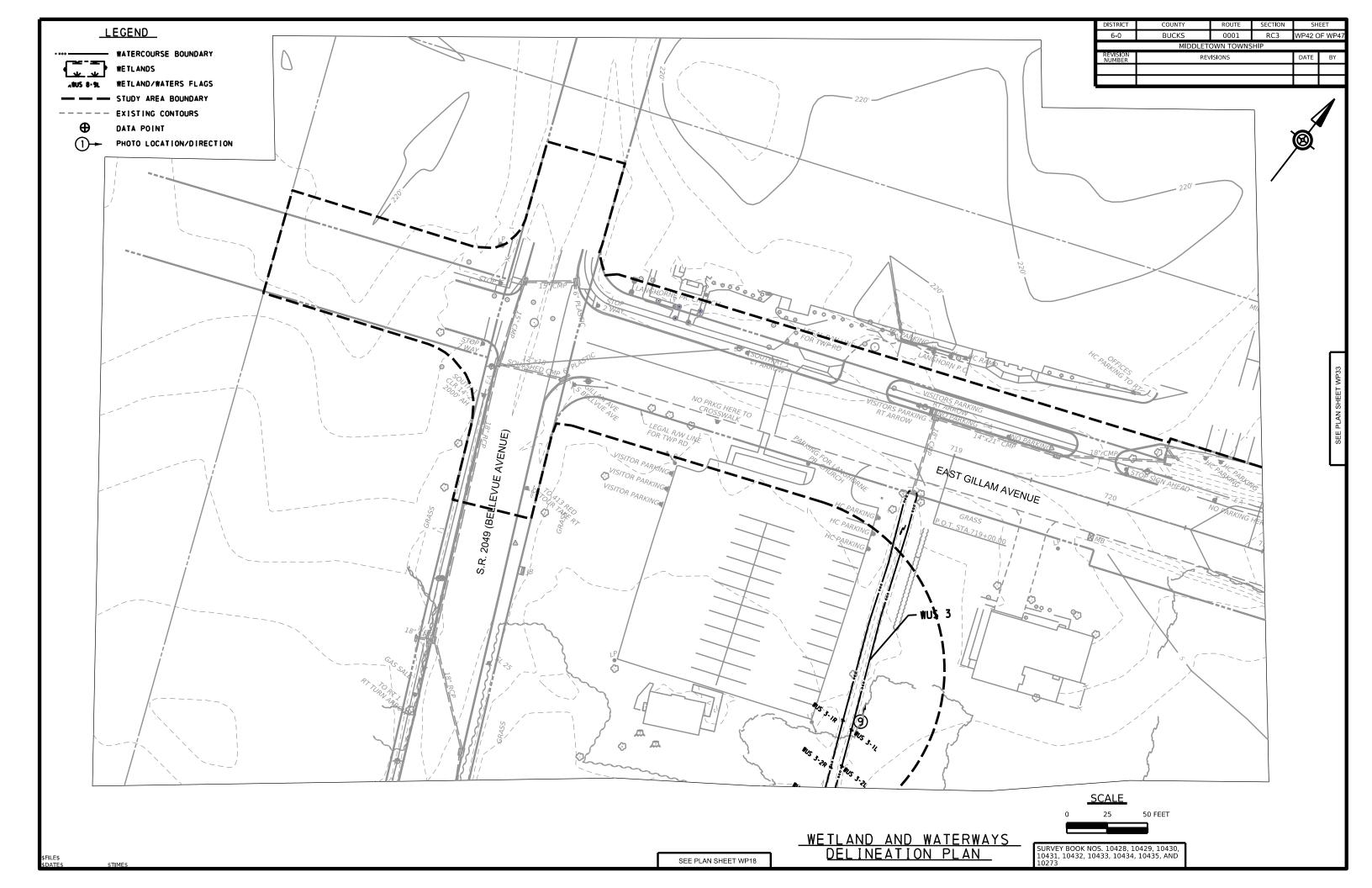
WATERCOURSE BOUNDARY

WETLAND/WATERS FLAGS

STUDY AREA BOUNDARY

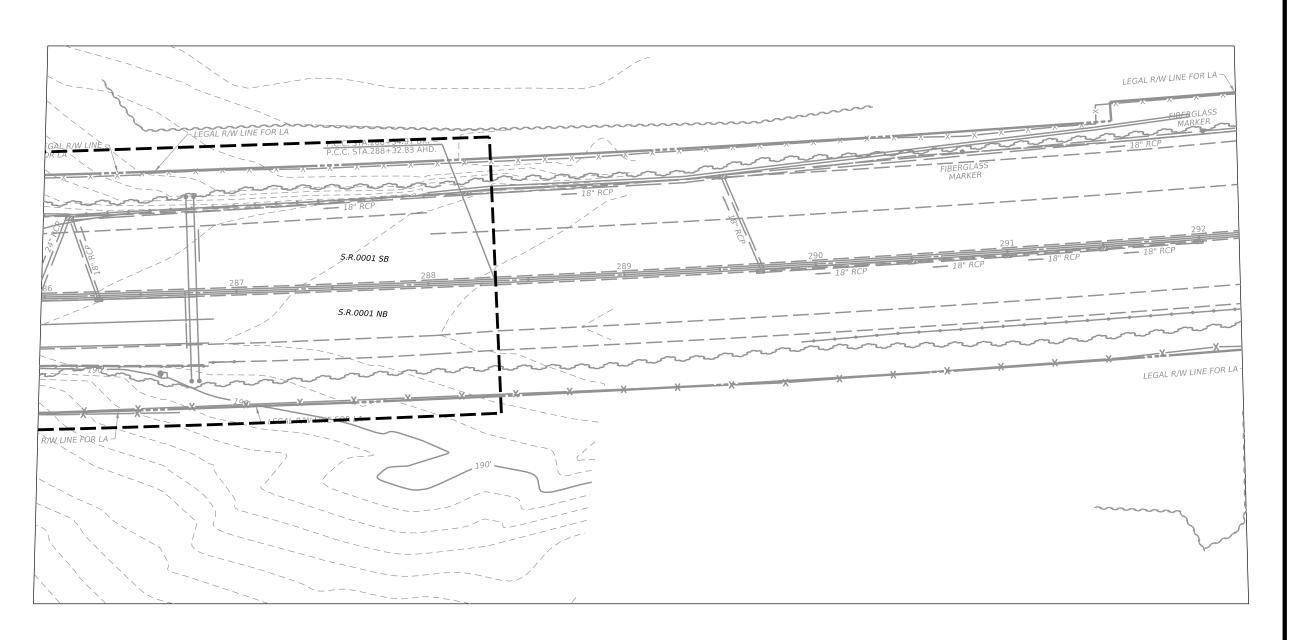
---- EXISTING CONTOURS

DATA POINT


1) -- PHOTO LOCATION/DIRECTION

SEE PLAN SHEET WP05

WETLAND AND WATERWAYS
DELINEATION PLAN

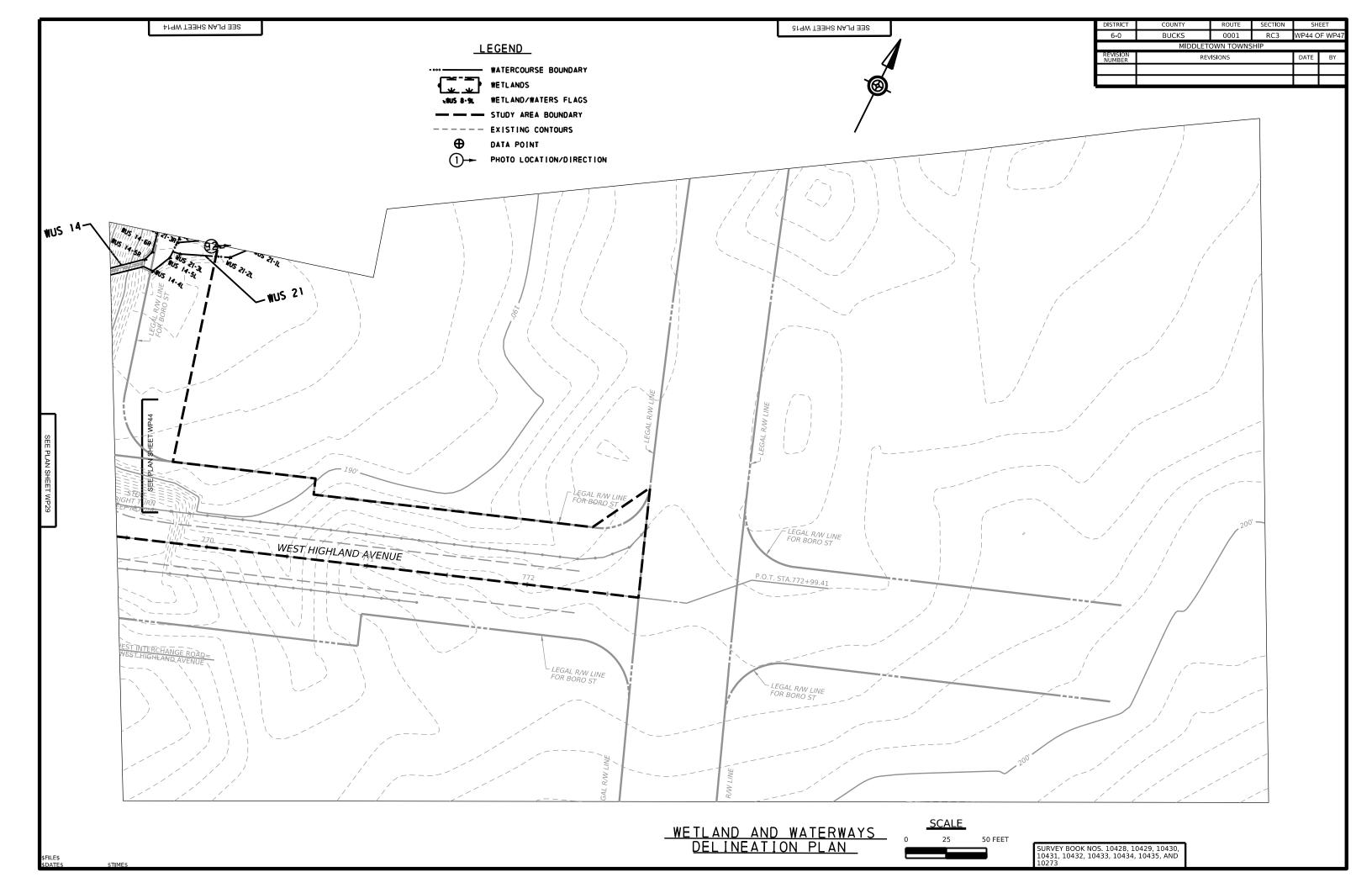

SURVEY BOOK NOS. 10428, 10429, 10430, 10431, 10432, 10433, 10434, 10435, AND 10273

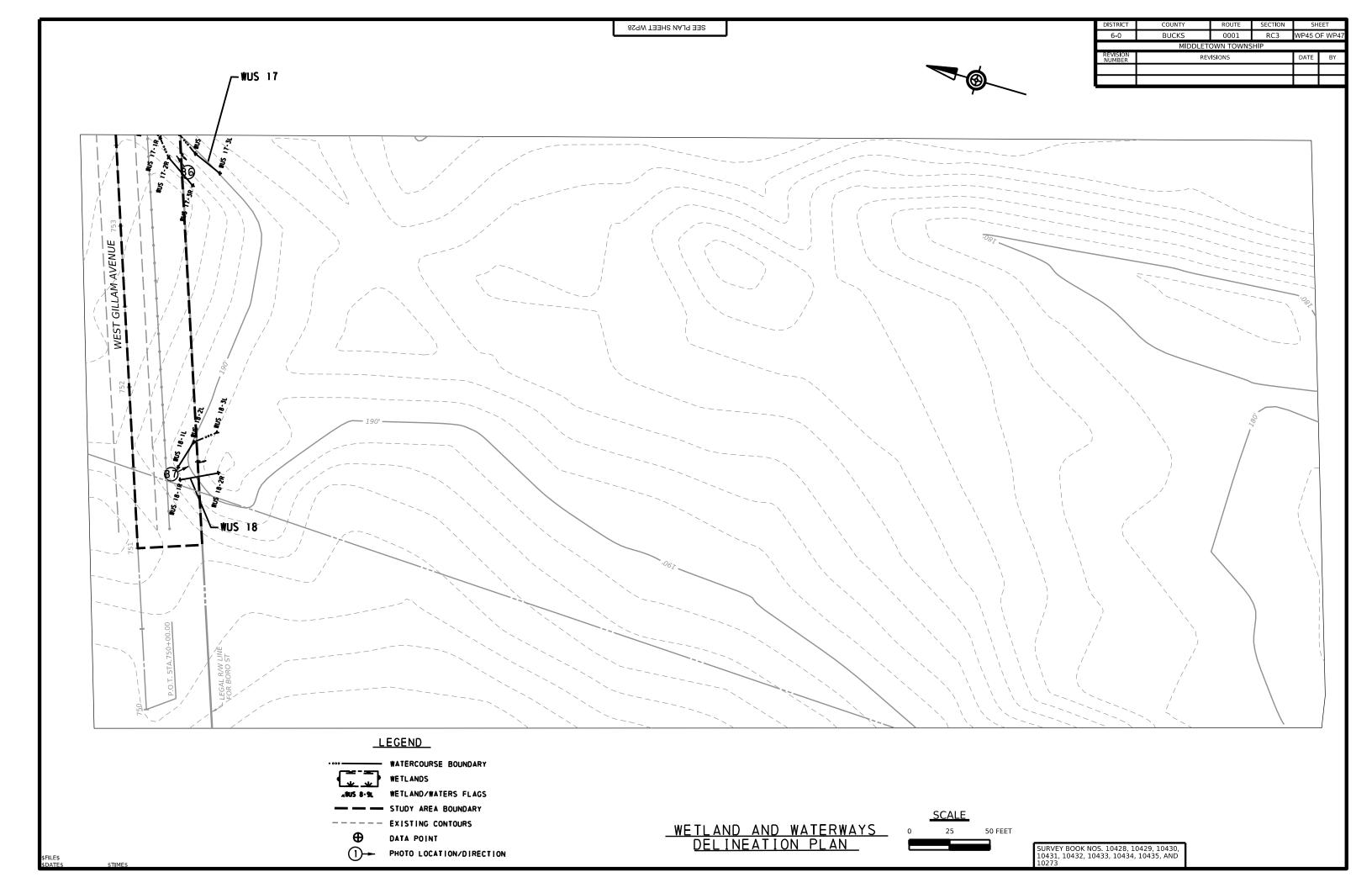
50 FEET

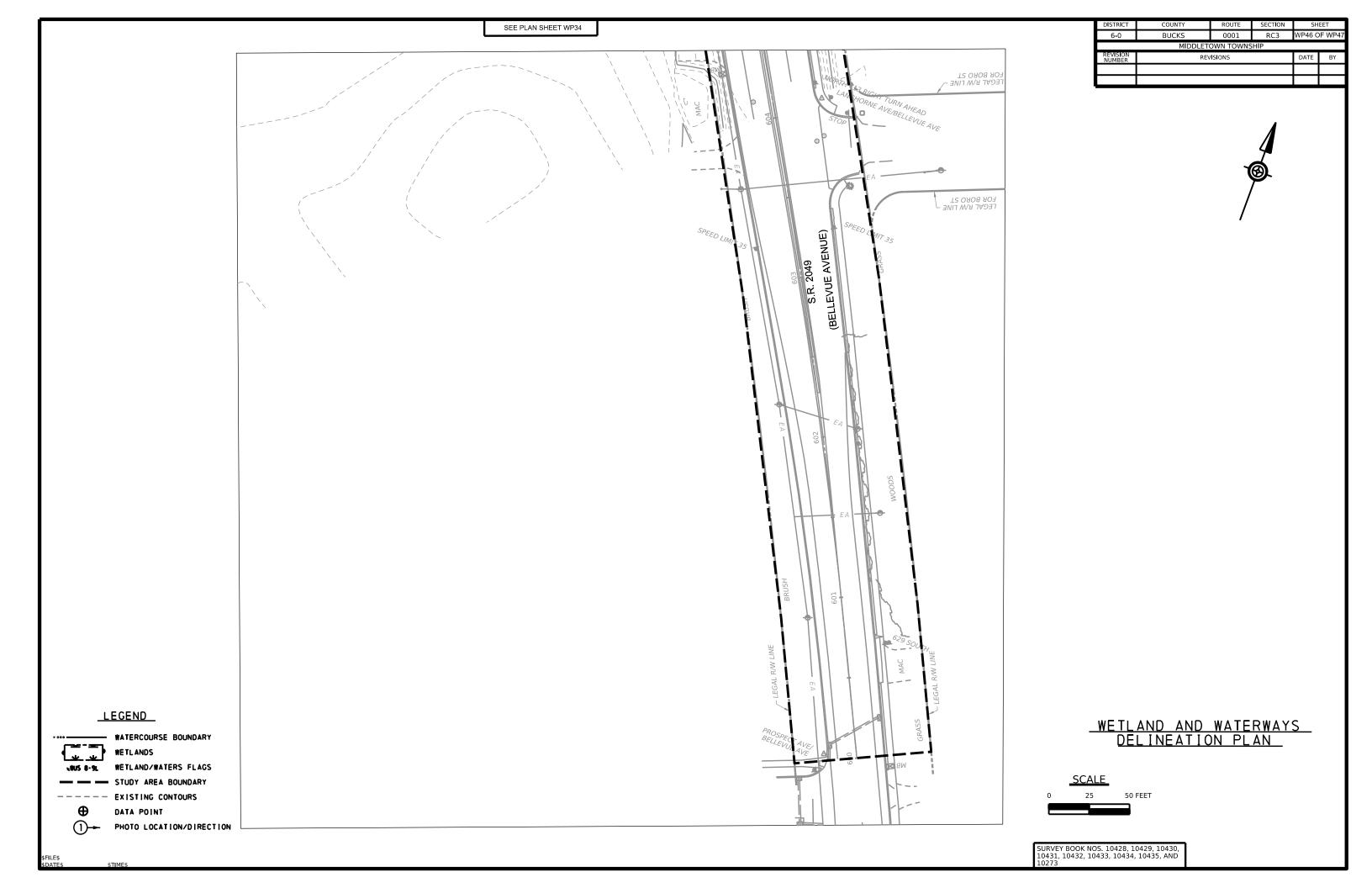
DISTRICT	COUNTY	ROUTE	SECTION	SH	EET	
6-0	BUCKS	0001	RC3	WP43 C	F WP47	
MIDDLETOWN TOWNSHIP						
REVISION NUMBER	REVISIONS			DATE	BY	

<u>LEGEND</u>

WATERCOURSE BOUNDARY
WETLANDS
WETLAND/WATERS FLAGS
STUDY AREA BOUNDARY
EXISTING CONTOURS


DATA POINT


1) - PHOTO LOCATION/DIRECTION


WETLAND AND WATERWAYS
DELINEATION PLAN

SCALE 0 25 50 FEET

SURVEY BOOK NOS. 10428, 10429, 10430, 10431, 10432, 10433, 10434, 10435, AND 10273

		DISTRICT COUNTY ROUTE SECTION SHEET 6-0 BUCKS 0001 RC3 WP47 OF WP47 MIDDLETOWN TOWNSHIP REVISIONS DATE BY
INUE INVE		
EAST MAPLE AV		
SEE PLAN SHEET WP38 TEGAL TTA		
S.R.0413 (PINE STREET) LEGAL R/W LINE		
WATERCOURSE BOUNDARY WETLANDS WETLAND/WATERS FLAGS WETLAND/WATERS FLAGS TO THE POINT		SCALE_0 25 50 FEET
DATA POINT PHOTO LOCATION/DIRECTION SFILES SDATES STIMES	WETLAND AND WATERWAYS DELINEATION PLAN	SURVEY BOOK NOS. 10428, 10429, 10430, 10431, 10432, 10433, 10434, 10435, AND 10273